
Abstract. Functions whose composition with every ultrametric is a
metric are said to be ultrametric-metric-preserving. In this paper, some

properties for this set of functions are provided. In addition, several results
for this class of functions, that are not valid for functions that preserve the
metric, are established. Some examples are given.

Keywords: Ultrametric space, ultrametric-metric-preserving function, metric-
preserving function, subbadittive function, uniformly discrete space.

Resumen. Las funciones cuya composición con toda ultramétrica es una 
metrica, son llamadas funciones que transforman ultramétricas en m
étricas. En este trabajo se proporcionan algunas de sus propiedades.
Además se proporcionan resultados para estas funciones, que no son
validos para funciones que preservan la métrica. Lo anterior se 
ilustra con algunos ejemplos.

Palabras claves: Espacio ultrametrico, función de preservación- ultramétrica-
métrica,  función de preservación-métrica, función subaditiva, espacio 
uniformamente discreto.

1 Introduction and D efinitions
Under what conditions on a f unction f :  [ 0, ∞) −→ [ 0, ∞), i s true that
f ◦ d  is a  metric f or every ultrametric space (X, d)? Pongsriiam and
Termwut-tipong [ 1] recently gave theorems concerning ultrametric-
metric-preserving f unctions. The purpose of this paper i s to i ntroduce
another results about these functions and give some revealing examples.
An ultrametric space i s a metric space (X, d) satisfying the i nequality:

for all x, y, z ∈ X, d(x, y) ≤  max {d(x, z), d(z, y)}. A  metric space (X, d)
is said to be topologically discrete i f f or every x ∈ X there i s an ε >  0 such
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that Bd(x, ε) = {x}, where Bd(x, ε) denote the open ball centered at x and
of radius ε. In addition, (X, d) is said to be uniformly discrete if there exists
an ε > 0 such that Bd(x, ε) = {x} for every x ∈ X.

Now we recall the definitions concerning certain behaviors of functions.
Unless noted otherwise, throughout the paper we suppose that f : [0,∞) −→
[0,∞). Then f is said amenable if f−1(0) = {0}, f is subadditive if f(a +
b) ≤ f(a) + f(b) for all a, b ∈ [0,∞), f is convex if f((1 − t)x + ty) ≤
(1− t)f(x) + tf(y) for all x, y ∈ [0,∞) and t ∈ [0, 1], if ≤ is replaced by <
and t ∈ (0, 1) then we say that f is strictly convex. The function f is called
metric-preserving if for all metric spaces (X, d), f ◦ d is still a metric. This
concept has been studied deeply for many authors; see for example [1,2,3,5,6].
We say that f is ultrametric-metric-preserving if for all ultrametric spaces
(X, d), f ◦ d is a metric.

In connection with the metric-preserving functions, the problem arises to
investigate the propierties of the ultrametric-metric-preserving functions and
compare them with those of metric-preserving functions. We have charac-
terized the continuity of a metric ultrametric-metric-preserving function f
at 0, and also we determined the continuity of f at 0 when its domain is a
finite product of [0,∞). In [3,7] it was proved the existence of f ′(0) (in the
extended sense), where f is a metric-preserving function. Through two ex-
amples ( 5.1 and 5.2), we concluded that the above result is not valid when
f is ultrametric-metric-preserving. However, by adding the hypothesis of
subadditivity (and continuity in one case) to f, we deduced the existence (in
the extended sense) of f ′(0).

Recall that a triple (a, b, c) of nonnegative real numbers is called triangle
triplet if a ≤ b + c, b ≤ a + c and c ≤ a + b, and it is called ultra-triangle
triplet if a ≤ max {b, c}, b ≤ max {a, c} and c ≤ max {a, b}. We denote by

△, the set of all triangle triplets, and by △∞, the set of all ultra-triangle
triplets.

Now we are ready to state the results we will use in the proof of our
theorems.

Theorem 1.1. [3, 6] Let f be amenable. Then the following statements are
equivalent:

(i) f is metric-preserving ;

(ii) If (a, b, c) ∈ △ then (f(a), f(b), f(c)) ∈ △.



(i) f is ultrametric-metric-preserving ;

(ii) If (a, b, c) ∈ △∞ then (f(a), f(b), f(c)) ∈ △;

(iii) for each 0 ≤ a ≤ b, f(a) ≤ 2f(b). �

Let T be a nonempty set of indices. We say that f : [0,∞)T −→ [0,∞)
is amenable if f−1(0) = {0}, and it is ultrametric-metric-preserving if for
each indexed family {(Xt, dt)}t∈T of ultrametric spaces the function f ◦ d

is a metric on the set
∏

t∈T

Xt, where d :

(

∏

t∈T

Xt

)

2

−→ [0,∞)T is given

by d((xt)t∈T , (yt)t∈T ) = (dt(xt, yt))t∈T which is denoted by d = (dt)t∈T . For
x, y ∈ [0,∞)T we will say that

x < y (resp. x ≤ y) if and only if xt < yt (resp. xt ≤ yt) for all t ∈ T,

Proposition 1.6. If f : [0,∞)T −→ [0,∞) is an ultrametric-metric-preserving
function then f is amenable.

Proof. Let x = (xt)t∈T ∈ [0,∞)T . For each t ∈ T we put Xt = {ut, vt, wt} ⊂
R2, being ut = (−xt

2
, 0), vt = (xt

2
, 0) and wt = (0, xt). Let dt = d∞ |Xt

be
the restriction on Xt of the metric d∞((a1, b1), (a2, b2)) = max {| a1 − a2 |, |
b1 − b2 |}. Then dt(ut, vt) = dt(ut, wt) = dt(vt, wt) = xt. Therefore (Xt, dt) is

an ultrametric space. By hypothesis, f◦d is a metric on

(

∏
t

∈T

Xt

)2

where d =

3
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Proposition 1.2. [1] If f is an ultrametric-metric-preserving function then
f is amenable. �

Lemma 1.3. [1] If (a, b, c) ∈ △∞, then a ≤ b = c or b ≤ c = a or c ≤ a = b. �

Lemma 1.4. [1] If (X, d) is an ultrametric space and x, y, z ∈ X then the triple
(d(x, y), d(x, z), d(z, y)) is an ultra-triangle triplet. Conversely, if (a, b, c) is an
ultra-triangle triplet, then there exist an ultrametric space (X, d) and x, y, z ∈
X such that a = d(x, y), b = d(x, z), and c = d(z, y). �

Theorem 1.5. [1] Let f be amenable. Then the following statements are
equivalent:
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(dt)t∈T . In consecuence, for u, v ∈ [0,∞)T we have f(0) = f(ρ(u, u)) = (f ◦
ρ)(u, u) = 0 and (f ◦ ρ)(u, v) = f(ρ(u, v)) = f((dt(ut, vt)t∈T ) = f((xt)t∈T ) =
f(x) = 0 which implies u = v, that is x = 0. This shows that f is amenable
as desired.

�

Theorem 1.7. Let f : [0,∞)T −→ [0,∞) be amenable. Then the following
statements are equivalents

(i) f is ultrametric-metric-preserving ;

(ii) If (at, bt, ct) ∈ △∞ for each t ∈ T then

(f((at)t∈T ), f((bt)t∈T ), f((ct)t∈T )) ∈ △;

(iii) for each 0 ≤ a ≤ b, f(a) ≤ 2f(b).

Proof. (i) =⇒ (ii). Let t ∈ T and (at, bt, ct) ∈ △∞. By Lemma 1.4,
there exist an ultrametric space (Xt, dt) and xt, yt, zt ∈ Xt such that at =
dt(xt, yt), bt = dt(xt, zt), ct = dt(zt, yt). Let d = (dt)t∈T . So f ◦ d is a metric

on
∏

t∈T

Xt by (i). Therefore we conclude

(f ◦ d(x, y), f ◦ d(x, z), f ◦ d(z, y)) = (f((at)t∈T ), f((bt)t∈T ), f((ct)t∈T )) ∈ △,
as required.
(ii) =⇒ (iii). Let 0 ≤ a ≤ b. Then (at, bt, bt) ∈ △∞ for each t ∈ T. By

hypothesis (f((at)t∈T ), f((bt)t∈T ), f((bt)t∈T )) ∈ △. Hence f(a) ≤ 2f(b), as
desired.
(iii) =⇒ (i). Let t ∈ T. Choose at, bt ∈ [0,∞), with at ≤ bt. Since (at, bt, bt) ∈

△∞, by Lemma 1.4 there exist an ultrametric space (Xt, dt) and ut, vt, wt ∈
Xt such that at = dt(ut, vt), bt = dt(ut, wt) = dt(wt, vt). We will prove

that f ◦ d is a metric on
∏

t∈T

Xt, where d(x, y) = (dt(xt, yt))t∈T . Since

f is amenable, f ◦ d(x, y) = 0 if and only if x = y. So it remains to
show that the triangle inequality holds for f ◦ d. By Lemma 1.4, we have
(dt(xt, yt), dt(xt, zt), dt(zt, yt)) ∈ △∞. From Lemma 1.3, we can assume with-
out loss of generality that dt(xt, yt) ≤ dt(yt, zt) = dt(zt, xt). By hypothe-
sis, f ◦ d(x, y) = f((dt(xt, yt)t∈T )) ≤ 2f(dt(yt, zt)t∈T ) = f(dt(yt, zt)t∈T ) +
f(dt(zt, xt)t∈T ) = f ◦d(y, z)+f ◦d(z, y). Hence (i) holds. This completes the
proof.

�
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2 Some Basic Results

We will denote for UM the set of all ultrametric-metric-preserving functions,
by M the set of the metric-preserving functions, and by S the set of the
subadditive functions. Since △∞ ⊂ △, it is clear the contention M ⊂ UM.
Also, it is known that M ⊂ S. The next example shows that S * UM and
UM * S.

Example 2.1. Let f, g : [0,∞) −→ [0,∞) be given by

f(x) = x2, g(x) =
x

1 + x2
. (1)

The function f is increasing. So, by Theorem 1.5, f ∈ UM. Also, we have
that f(1 + 2) > f(1) + f(2), that is, f /∈ S.
It is easy see that g(a + b) ≤ g(a) + g(b) for all a, b ∈ [0,∞), and therefore
g ∈ S. By Proposition 2.3 below g /∈ UM.

�

The next example shows a continuous function in the set (UM∩ S \ M) .

Example 2.2. Let f(x) = φ(x − 2p) + p if 2p ≤ x ≤ 2(p + 1) for
p = 0, 1, 2, . . . , where φ is given by

φ(x) =

{

2x, if 0 ≤ x ≤ 1;
3− x, if 1 ≤ x ≤ 2.

(2)

We will show that f ∈ UM by applying Theorem 1.5. So we let 0 ≤ a ≤ b.
The posibility a = 0 is obvious, so consider a > 0. There exists k ∈ N such
that a ∈ Ik = (k − 1, k].

(i) k is even. If b ≥ k+ 1
2
then f(a) ≤ f(b). So, we can suppose k−1 < a ≤

b < k+ 1
2
. Since f([k−1, k+ 1

2
]) = [k

2
, k
2
+1], we have | f(a)−f(b) |≤ 1.

So, f(a) ≤ f(b) + 1 ≤ f(b) + k
2
≤ 2f(b).

(ii) k is odd. If a, b ∈ Ik then f(a) ≤ f(b). Now, we assume that b /∈ Ik.
If b ≥ k + 3

2
then f(a) ≤ f(b). Let k < b < k + 3

2
. We only consider

the posibility non trivial k − 1
2
≤ a. By definition of f we deduce

f([k − 1
2
, k + 3

2
)) = [k+1

2
, k+3

2
). Therefore | f(a) − f(b) |≤ 1. Thus

f(a) ≤ 1 + f(b) ≤ k+1
2

+ f(b) ≤ 2f(b).
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In any case, f(a) ≤ 2f(b) holds. Hence f ∈ UM. To see that f /∈ M it is
sufficient to observe that (2, 2, 3) ∈ △ but (f(2), f(2), f(3)) /∈ △.
Next,we shall prove that f is subadditive. Let 0 < a ≤ b. There exist integers
m ≤ n ≤ k so that a ∈ Im, b ∈ In and a+b ∈ Ik. We have the following cases

(1) m + n = k. Assume k is odd. Then m is even and n is odd or vice
versa. Namely m is even and n is odd. Hence

f(a+ b) = 2(a+ b)−
3

2
(m+ n− 1)

= f(a) + f(b) + 3(a−m)

≤ f(a) + f(b).

For the posibility that m is odd and n is even, we can also get easily
that f(a+ b) = f(a) + f(b) + 3(b− n) < f(a) + f(b).
Now, suppose that k is even. If m and n are odd then

f(a+ b) =
3

2
k − (a+ b)

= f(a) + f(b) + 3((m+ n)− (a + b)− 1)

= f(a) + f(b) + 3((k − 1)− (a+ b))

< f(a) + f(b).

It is easy to see that f(a+ b) = f(a)+f(b) provided m and n are even.

(2) m+n−1 = k. When k is odd , we can obtain similarly to the previous
case

f(a+b) =

{

3((a+ b)− k) + f(a) + f(b) ≤ f(a) + f(b), if n,m even;
f(a) + f(b), if n,m odd.

In addition, if k is even then

f(a+b) =

{

3((n− 1)− b) + f(a) + f(b) < f(a) + f(b), if m even, n odd;
3((m− 1)− a) + f(a) + f(b) < f(a) + f(b), if m odd, n even.

This completes the proof. Therefore f is subadditive.
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The conclusion of the following proposition is valid when f is metric-
preserving. Its proof can be found in [3]. However, the result is also true in
the case that f is ultrametric-metric-preserving.

Proposition 2.3. Let f : [0,∞) −→ [0,∞) be an ultrametric-metric-preserving
function. Then for all ε > 0 there exists a δ > 0 such that f−1[0, δ) ⊂ [0, ε).

Proof. If the assertion is false, then there are ε > 0 and a sequence {xn}n∈N
such that xn > ε for all n and {f(xn)}n∈N −→ 0. Let n0 be such that

f(xn0
) <

f(ε)

2
. Then ε < xn0

and f(ε) > 2f(xn0
), which contradicts to

Theorem 1.5.
�

Proposition 2.4. Let f : [0,∞) → [0,∞) amenable. If there exists an
nondecreasing function g : [0,∞) → [0,∞) such that g(x) ≤ f(x) ≤ 2g(x)
for all x ∈ [0,∞), then f is ultrametric-metric-preserving.

Proof. Let 0 ≤ a ≤ b. Then

f(a) ≤ 2g(a) ≤ 2g(b) ≤ 2f(b).

So, the result follows from Theorem 1.5.

�

By Proposition 2.4 f(x) = x + x | sin x | for x ≥ 0 is ultrametric-metric-
preserving because f(x) ∈ [x, 2x]. In this case, we also have f /∈ M. In fact,
(π
2
, π, 3

2
π) is a triangle triplet, but (f(π

2
), f(π), f(3

2
π)) is not.

3 Continuity

In this section, we will investigate aspects of the continuity of the functions 
in UM. The continuity of functions in M has already been studied [1,3,5].

Theorem 3.1. [3] Suppose f : [0, ∞) −→ [0, ∞) is metric-preserving and 
continuous at 0. Then f is continuous on [0, ∞).

�
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What conditions must satisfy a function f ∈ UM \ M which is conti-
nuous at 0, in order to be continuous on [0,∞)? In the example 3.8 below,
we give a function in (UM∩ S) \ M, continuous at 0, and discontinuous at
the points n

2
for n ≥ 2.

Theorem 3.2. [1] Let f : [0,∞) −→ [0,∞) be ultrametric-metric-preserving.
Then f is continuous at 0, if and only if for every ε > 0 there exists an x > 0
such that f(x) < ε.

�

The next result is a caracterization of the discontinuity at 0 of an ultrame
tric-metric-preserving function.

Theorem 3.3. Let f : [0,∞) −→ [0,∞) be an ultrametric-metric-preserving
function. Then f is discontinuous at 0 if and only if f ◦ d is an uniformly
discrete metric for every ultrametric d.

Proof. Let (X, d) be an ultrametric space. Suppose that f is discontinuous
at 0. By Theorem 3.2 there exists an ε > 0 such that f(z) > ε for all z > 0.
Then Bf◦d(x, ε) = {x} for each x ∈ X as required. Inversely, we assume that
f ◦ d is an uniformly discrete metric for every ultrametric d. Let x > 0. Put
X = {(0, 0), (0, x), (x, 0)} ⊂ R2. Let d = d∞ |X be the restriction on X of the
metric d∞ given in the proof of the Proposition 1.6. Then d((0, 0), (x, 0)) =
d((0, 0), (0, x) = d((x, 0), (0, x)) = x. Therefore (X, d) is an ultrametric space.
By hypothesis there exists ε > 0 such that Bf◦d((0, 0), ε) = {(0, 0)}. So it
follows that (f ◦ d)((0, 0), (x, 0)) = f(d((0, 0), (x, 0))) = f(x) ≥ ε. We obtain
the result from Theorem 3.2

�

Theorem 3.2 is also valid for the case when the dominio of f is a finite
product of [0, ∞). Precisely, we obtain the following theorem.

Theorem 3.4. Let f : [0, ∞)T −→ [0, ∞) be an ultrametric-metric-preserving 
function where T is finite. Then f is continuous at 0, if and only if for every
ε > 0 there exists an x > 0 such that f(x) < ε.

http://revistas.ujat.mx/index.php/jobs ISSN: 2448-4997
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Proof. We omitted the proof of the necessity. Conversely, let ε > 0. There

exists x ∈ [0,∞)T such that x > 0 and f(x) <
ε

2
(∗). We consider the set

U =
⋂

t∈T

π−1
t ([0,min xt)). Clearly, U is an open neighborhood of 0. Let y ∈ U.

Then 0 ≤ y ≤ x. By Theorem 1.7 and (∗), we obtain f(y) ≤ 2f(x) < ε. That
is, f is continuous at 0.

�

The following example shows that the assumption T is finite in Theorem
3.4 can not be ignored.

Example 3.5. Let f : [0,∞)N −→ [0,∞) given by f((xn)) = sup
n∈N

{min {1, xn}}.

Applying Theorem 1.7, it is easy to see that f is ultrametric-metric-preser-
ving. Now we shall prove that f is not continuous at 0. Let 0 < ε < 1 and U
be an opened neighborhood of 0 (in the product topology). Then there are

δ > 0 and a nonempty finite subset F of N such that
⋂

n∈F

π−1
n ([0, δ)) ⊂ U.

Define x = (xn) ∈ [0,∞)N by

xn =











δ

2
for n ∈ F ;

1 otherwise .

So x ∈ U and f(x) = 1 > ε. Thus f(U) * [0, ε) and we conclude the
desired result. Next, it is shown that f satisfies the necessity in Theorem

3.4. Let ε > 0 and n0 be a positive integer such that
1

n0
< ε. Pick the

point x = (xn) ∈ [0,∞)N where xn =
1

n0
for each n ∈ N. It is obvious that

f(x) =
1

n0
; that is, the mentioned proposition is true.

�

Let Z be a topological space. We say that a function f : Z −→ R is lower 
semicontinuous if f−1(−∞, a] is a closed set for all a ∈ R.

It is well known that if f is lower semicontinuous and g is continuous,
then f ◦ g is lower semicontinuous. Thus, we obtain the following result.
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Proposition 3.6. Let (X, d) be a metric space. If f : [0,∞) −→ [0,∞) is
lower semicontinuous, then f ◦d : X×X −→ [0,∞) is lower semicontinuous.

�

Proposition 3.7. Let f : [0,∞) −→ [0,∞) be an ultrametric-metric-preserving
function. If f is continuous at (0,∞) and discontinuous at 0 then f is lower
semicontinuous.

Proof. Since f is discontinuous at 0 there exists ε > 0 such that f(x) > ε
for all x > 0. Then

f−1(−∞, a] =























∅ for a < 0;

{0} for a ∈ [0, ε];

{0} ∪ f−1[ε, a] for a > ε.

In each case the set f−1(−∞, a] is closed. Therefore f is lower semicontinu-
ous.

�

The following example shows a function f which does not satisfies the
condition of the continuity in the Proposition 3.7, and however it is lower
semicontinuous.

Example 3.8. Let

f(x) =























x if x ∈ [0, 1);

x− n+ 1
2

if x ∈ [n, n+ 1
2
), for each n ∈ N;

x− n if x ∈ [n + 1
2
, n+ 1), for each n ∈ N.

(3)

f is continuous at x = 0 and discontinuous at x ∈ {n, n + 1
2
: n ∈ N}. By

Theorem 1.5 f ∈ UM. In fact, let 0 ≤ a ≤ b. Just consider the case nontrivial
1
2
≤ a. Due | f(a) − f(b) |< 1

2
, we obtain f(a) < f(b) + 1

2
≤ 2f(b) as was

10http://revistas.ujat.mx/index.php/jobs ISSN: 2448-4997
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desired. It is easy to see that f ∈ S. On other hand, since Imf = [0, 1), it
follows that

f−1(−∞, a] =



























[0, a] if 0 ≤ a < 1
2
;

⋃

n∈N
(An ∪ Bn) ∪ [0, a] if 1

2
≤ a < 1,

[0,∞) if a ≥ 1,

where An = [n, a + n − 1
2
] y Bn = [n + 1

2
, a + n] for each n ∈ N. Thus f is

lower semicontinuous.

�

4 UM and Convexity

Lemma 4.1. If f : [0,∞) −→ [0,∞) is amenable and convex (strictly con-

vex), then the function
f(x)

x
is nondecreasing (increasing) on (0,∞).

Proof. Let a, b ∈ (0,∞) and a < b. Since f is convex (strictly convex), we
obtain

f(a) = f
((

1−
a

b

)

(0) +
(a

b

)

(b)
)

≤ (<)
(

1−
a

b

)

f(0) +
(a

b

)

f(b)

=
(a

b

)

f(b).

Therefore
f(a)

a
≤ (<)

f(b)

b
, as required. �

Given a function f : X −→ X, we denote by Fixf the set of all fixed
points of f.

Corollary 4.2. Let f : [0,∞) −→ [0,∞) amenable and convex. If f(a) = a
and f(b) = b where 0 < a < b, then [a, b] ⊂ Fixf .

Proof. Let x ∈ (a, b). By Lemma 4.1

1 =
f(a)

a
≤

f(x)

x
≤

f(b)

b
= 1.

Hence f(x) = x as asserted.
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Theorem 4.3. Let f : [0,∞) −→ [0,∞) be amenable. If f is strictly convex,
then f is ultrametric-metric-preserving and is not metric-preserving.

Proof. Let 0 ≤ a < b. We shall prove that f is increasing. First observe
that if a = 0, then f(0) = 0 < f(b). Now suppose 0 < a. By Lemma

4.1 the function
f(x)

x
is increasing on (0,∞). Therefore

f(a)

a
<

f(b)

b
. So

f(a) <
a

b
f(b) < f(b). By Theorem 1.5, f is ultrametric-metric-preserving.

Furthermore, also of the strictly convexidad of f, it follows the inequality

f

(

a+ b

2

)

<
f(a+ b)

2
, whence f

(

a+ b

2

)

+ f

(

a + b

2

)

< f(a + b), which

violates subadditivity. Since M ⊂ S, we conclude that f is not metric-
preserving.

�

Concerning the previous theorem, it is easy to prove that if we substitute
strictly convex rather than convex in the hypothesis, then the conclusion is
f ∈ UM. In this case the function f may be metric-preserving; for example
f(x) = x.
The function f given in Example 2.2 is not convex and f ∈ UM. So, UM
properly contains the whole set of convex functions.
We will need the next result which surely appears in the literature.

Lemma 4.4. Given f : [0,∞) −→ [0,∞).

(1) if f is amenable and convex then f( x
2n
) ≤ f(x)

2n
for all x ≥ 0 and n ∈ N,

(2) if f is subadditive then f( x
2n
) ≥ f(x)

2n
for all x ≥ 0 and n ∈ N.

�

Lemma 4.5. If f is ultrametric-metric-preserving and subadditive, then

x

f(x)
≤ 22

y

f(y)
whenever 0 < x ≤ y.
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Proof. Let 0 < x ≤ y. Pick n ∈ N so that 2n−1 ≤
y

x
< 2n. Since

y

2n
< x by

Lemma 4.4 (2) and Theorem 1.5

f(y)

2n
≤ f

( y

2n

)

≤ 2f(x).

Hence, and from
2n−1

y
≤

1

x
, we obtain

f(y)

y
≤ 2n+1f(x)

y
≤ 22

f(x)

x
.

Thus, the result follows.

�

Theorem 4.6. Suppose f is amenable, subadditive and convex. Then f is
linear.

Proof. Since f is convex, by Lemma 4.1 g(x) =
f(x)

x
is nondecreasing on

(0,∞). We will prove that g is a constant function. Let a, b ∈ (0,∞), with
a < b. We know g(a) ≤ g(b). On the other hand, we choose n ∈ N so that
b

2n
< a. By Lemma 4.4, and again by Lemma 4.1, it follows

g(b) =
f(b)

b
=

f(b)

2n

b

2n

=

f

(

b

2n

)

b

2n

≤
f(a)

a
= g(a).

Thus g(a) = g(b). We conclude that
f(x)

x
= m, where m =

f(a)

a
for any

a > 0. So, f(x) = mx for all x ∈ [0,∞), as required. This completes the
proof.

�
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5 UM and Differentiability

We know from [3], that for any metric-preserving function f , f ′(0) exists in
the extended sense. This statement is based on whether the set
Kf = {r > 0 : f(x) ≤ rx, for all x ≥ 0} is empty. Namely

(a) if Kf = ∅ then f ′(0) = ∞; (b) if Kf 6= ∅ then f ′(0) < ∞. (4)

By the following two examples, it is shown that the propositions (a) y (b)
are false when f is ultrametric-metric-preserving and continuous at x = 0.

Example 5.1. Let

f(x) =











x2 if x ∈ Q ∩ [0,∞);

x2

2
if x ∈ Qc ∩ [0,∞).

(5)

It is easy to see that Kf = ∅ and f ′(0) = 0. By Proposition 2.4, f ∈ UM
and from Theorem 3.1, f /∈ M.

�

Example 5.2. Let f : [0,∞) −→ [0,∞) be given by

f(x) =































x if x ∈ Q ∩ [0, 1];

x

2
if x ∈ Qc ∩ [0, 1];

1

2
if x > 1.

(6)

From the Theorem 3.1 f /∈ M. We observe that f(x) ∈ [g(x), 2g(x)], where

g(x) =















x

2
if x ∈ [0, 1];

1

2
if x > 1.

Thus, by Proposition 2.4 f ∈ UM. We claim that lim
x−→0

f(x)

x
does not exist.

In fact, let t be a sequence that converges to 0. Then

{

f(t)

t

}

−→ 1 whenever
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t ⊂ Q, but

{

f(t)

t

}

−→ 1
2
for t ⊂ Qc. That is, f ′(0) does not exist. Observe

that f(x) ≤ x for every x ∈ [0,∞), so Kf 6= ∅.

�

Theorem 5.3. Suppose f is ultrametric-metric-preserving, subadditive and
Kf = ∅. Then f ′(0) = ∞.

Proof. Let n ∈ N. Since Kf = ∅, we can to choose y > 0 such that 22ny ≤
f(y). Let x ∈ (0, y]. By Lemma 4.5 and the above inequality

x

f(x)
≤ 22

y

f(y)
≤

1

n
.

Thus
f(x)

x
≥ n. This completes the proof.

�

The function f in Example 5.1 satisfies f ∈ UM, Kf = ∅, f /∈ S and
f ′(0) = 0. Accordingly, we conclude that the hypothesis f ∈ S in Theorem
5.3 is essential.
Next example shows a ultrametric-metric-preserving function and continuous
on [0,∞), which is not differentiable at 0.

Example 5.4. Consider the continuous function f defined as

f(x) =







0 if x = 0;

x+ x | sin 1
x
| if x > 0.

(7)

Since f(x) ∈ [x, 2x] for all x ≥ 0, by the Proposition 2.4, f ∈ UM. Also, we
have Kf 6= ∅. On the other hand it is clear thatf ′(0) does not exist.

�

Let us observe that the function in Example 5.4 is not subadditive;
indeed f( 1

π
+ 2

π
) > f( 1

π
) + f( 2

π
), and the function (2) is continuous on

[0, ∞), ultrametric-metric-preserving, subadditive and differentiable at 0.
The proof of the next result is identical to the verification of the equality
(4.2) f ′(0) = min Kf which appears in [3].
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Theorem 5.5. Let f be ultrametric-metric-preserving, continuous and sub-
additive. If Kf 6= ∅ then f ′(0) < ∞.

�

It is known that every metric function f such that f ′(0) < ∞, it is
differentiable almost everywhere [7]. Actually it is unknown if this result is
valid for ultrametric-metric-preserving functions. We leave this problem for
the interested reader and also the study the behavior of ultrametric-metric-
preserving functions with f ′(0) = ∞.

Conclusions

We note that the continuity at 0 of a ultrametric-metric-preserving function
f is equivalent to give an ultrametric d, such that f ◦ d becomes a discrete
uniformly metric. A possible direction of this research is the study of interes-
ting global properties of f which they can be deduced from the behaviors of
f at 0, such as continuity at 0 or the value of f ′(0) (finite or infinite) if it
exists. Moreover, also as an additional study it is the characterization of the
set of fixed points of an ultrametric-metric-preserving function f, when f is
not necessarily strictly convex.
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