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En este trabajo se corrige el cálculo hecho por Einstein que aparece en su libro titu-
lado “The meaning of Relativity”, (Princeton, 1953), por medio del cual él trata de
obtener el número de grados de libertad para un sistema constituido por n part́ıculas
cuyas distancias se mantienen fijas y que se encuentran en un espacio tridimensional.
Como resultado del presente análisis, se desarrollan expresiones que permiten hallar
el número correcto de grados de libertad de sistemas como el descrito, además de
generalizaciones para un espacio de dimensión arbitraria D.

In this work we correct a calculation made by Albert Einstein that appears in his
book titled “The Meaning of Relativity” (Princeton, 1953), and by means of which he
tries to obtain the number of degrees of freedom of a system constituted by n particles
with fixed relative distances and which are immerse in a three-dimensional space. As
a result of our analysis, we develop expressions which yield the number of degrees of
freedom of an analogous system, not only in three, but in any arbitrary number D of
dimensions.
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The number of independent coordinate variables needed to simultaneously de-
termine the position of every particle in a dynamical system is called the number
of degrees of freedom of that system. So a system of n free particles in a three-
dimensional space has 3n degrees of freedom, because three coordinates are needed
to specify the location of the center of mass of each particle. However, if the particles
are no longer all free, but there are restrictions imposed on the system, the number
of degrees of freedom will be less than 3n; 3n coordinates are still needed to locate
the centers of mass, but less than 3n values are assignable at will to the coordinate
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variables [1]. Specifically, we are interested in the system made up of n particles
in three-dimensional space, which hold fixed distances between them. In the sake
of clarity, this system will be referred to from now on as S3, and the number of its
degrees of freedom will be referred to as N3.

Usually, N3 is calculated by giving S3 the treatment of a rigid body. Mechanics
recognizes two types of rigid bodies: the ones made up by a continuous distribution
of mass; and those formed by n mass points joined by rigid links [2]. Thus, S3 is
equivalent to a rigid body of the second type.

It is not difficult to calculate the number of degrees of freedom of a rigid body of
continuous mass. For most cases, the number of degrees of freedom is six, as three
coordinates are needed to locate the body´s center of mass and three more to describe
its orientation [1],[2]. But if the mass is all distributed along a single line, then it will
be impossible for the body to rotate about that line, and therefore, such a body has
only five degrees of freedom [2],[3]. A similar reasoning is used to calculate N3, after
assuming that S3 may be viewed as a sole body instead of a collection of particles.
Hence, N3 is five when n = 2, since the mass points lie all along the same line, and
is six when n > 2 [4]. The case in which n > 2 particles lie all on the same line will
not be considered in this work.

This same results should be attainable through individual consideration of the
particle which make up S3. Counting the number of degrees of freedom of S3 is fairly
easy when n is equal to two: six are the coordinates needed to locate the centers
of mass of the particles, but there is one restriction (one rigid link), so the number
of degrees of freedom of S3 is five. It is not hard either to calculate the number of
degrees of freedom of S3 when n = 3. Then, nine coordinates are needed to specify
the positions of the particles´centers of mass, but since there are three restrictions,
the number of degrees of freedom is six. That is, if the triad does not lie all along
the same line; if that is so, there are four restricitions and the number of degrees of
freedom of the system is again five.

The operation of calculating N3 by consideration of the individual particles would
be much easier if an expression which would yield the number of degrees of freedom of
S3 for any given value of n was developed. Albert Einstein figures among those who
tried to develop an expression such. Einstein dealt with this problem in one of his
books [5], using it as an example of the importance that geometrical concepts have a
correspondence with real objects. He reasoned more or less along the following lines:

If one particle (let this particle be called particle 1), is arbitrarily chosen from
among the n that compose S3, n − 1 equations are needed to express the fact that
this particle holds fixed distances with the rest

(xj − x1)
2 + (yj − y1)

2 + (zj − z1)
2 = d (1)

where d is a constant and j = 1, 2, 3, ..., n

But when a second particle is taken into consideration, to express that the dis-
tances between this and the other particles remain constant, only n−2 equations are
needed, because the equation that shows that the distance between particles 1 and
2 is constant is already included in (1). If a third particle is considered, there would
be n− 3 equations more; for a fourth particle, there would be n− 4 equations more,
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and so on. In total, there are n(n−1)
2 different equations. These equations represent

the system´s restrictions; they are the constraint equations of the system.

Einstein must have thought that he would obtain the number of degrees of freedom
of S3 merely by substracting the number of constraint equations from 3n :

N3 = 3n− n (n− 1)
2

(2)

If (2) is solved for n > 4, it will be seen that the values of N3 differ from those
obtained when S3 was viewed as a single body. Why does this happen? Maybe
because it is not all appropiate to consider the collection of particles with rigid links
as one body. Or more likely, because the count of the degrees of freedom of S3

by consideration of the individual particles was not done correctly. Which ever the
reason may be, we will soon find out.

As it turns out, there is something definitely wrong with (2), and it is that

3n− n (n− 1)
2

≈ −n2

2
< 0, (3)

for n >> 1,

which is absurd.

Einstein did notice this flaw, because in his book, instead of (2) he has:

N3 =
n (n− 1)

2
− 3n (4)

We cannot think of any physical or mathematical justification for this change of
signs, and although it removes the problem of getting a negative value of N3 when
n >> 1, it brings up a new problem.

In the limit when n tends to infinity, the system S3 is equivalent to a rigid body
of continuous mass. So it would be expected that if the limit of N3 is taken when n
tends to infinity, this limit should be equal to six. But this does not hold true for N3

as defined in (4); the limit when n tends to infinity diverges.

Einstein introduced, as a footnote, the following correction:

N3 =
n(n− 1)

2
− 3n + 6 (5)

Nonetheless, the limit when n tends to infinity of the modified N3 is still undefined,
so (5) cannot be the correct expression for N3 either.

When we took up the task of developing an accurate expression for N3, we did not
take off from where Einstein left the problem, but instead, we directed our attentions
back to (2), which is the expression that Einstein must have come up with originally,
in spite of the fact that it doesn´t appear in his book. We did so because, as incorrect
as it may be, there is a consistent line of thinking behind expression (2), which there
is not behind expressions (4) or (5).
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Expression (3) gave us a hint of where the flaw in (2) may be. Not in the signs, but
rather, in the lack of a term. A term that shouldn´t be a constant, but dependent
of n. A term that added up to the other two would not only make N3 possitive for
n >> 1, but actually equal to six. So there must be an aditional source of degrees of
freedom which Einstein missed to consider. If we could identify where this source of
degrees of freedom was, we would have our problem solved.

A group of n particles may rotate in space without dissatisfying the condition that
the distances between the particles remain constant. However, it is meanigless to
talk about rotations without first establishing an adequate reference frame. To do so
we arbitrarily selected three particles from S3; the points were the centers of mass of
these particles are located generate a plane P in three-dimensional space. And the
vector v, which is orthogonal to P , designates an arbitrary direction in space. We
must point out that we are defining v as a fixed vector, and that it is perpendicular to
P in its original position, but as S3 rotates, this perpendicularity relation will be lost.
Therefore, it is convenient to make a copy of P , which we will call P ,́ and hold this
copy fixed in the original position of P . Thus v will allways be orthogonal to P .́ By
considering the plane P ´and its normal vector, we are defining a three-dimensional
coordinate system (figure 1).

Figura 1. At instant t = 0 (a) the system is in its initial posistion. The line that conects

the centers of mass of two arbitrary particles forms an angle ϕ(t = 0) with the direction of

the vector v orthogonal to the reference plane P . At a future instant t = t′ (b) the system

has rotated respect to its original position. The plane P has moved, but a copy P ′ remains

in the original position of P , so now v is perpendicular to P ′. And the line that joins the

centers of mass of the particles we had considered forms an angle ϕ(t′) with the direction of

v.
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Now, if we choose two particles, different from the ones used to generate the plane,
the line that joins their centers of mass is a possible rotation axis for S3. And since
the number of ways in which pairs may be chosen from a set of n− 3 particles is

C2
n−3=

(n− 3)!
2!(n− 5)!

=
(n− 3)(n− 4)

2
, (6)

for n ≥ 3.

There will be an equal number of such axes. Each of this axes forms with the
direction of the vector v an angle ϕi which is a function of time and determines a
possible rotation of the system. In general, the different ϕi will not hold relations of
linear independence.

We believe that the number of ϕi allowed to S3 for a given value of n is the
term missing in Einstein’s calculation, and we propose that the number of degrees of
freedom for the system S3 is given by:

N3= 3n−n(n− 1)
2

+
(n− 3)(n− 4)

2
= 6, (7)

when n ≥ 3.

However, (2) seems to be the correct expression for n = 2. It also works for n = 3
and n = 4, which is not surprising, since for this value of n the last term in expression
(7) is equal to zero, so (7) and (2) are equivalent.

Once we had developed this expressions, we were curious on wether, by following
the same line of reasoning, we could calculate the number of degrees of freedom of
S4, that is, of the system made up by n particles with fixed relative distances, but
which is, unlike S3, immerse in a four dimentional space.

In this four-dimentional case, four coordinates are needed to locate the center of
mass of each particle, which makes 4n coordinates for the set of n particles. And the
number of constraint equations is the same as for S3

In principle, the number of degrees of freedom should be the same as for a tetra-
dimensional rigid body. And in four dimensions there are ten degrees of freedom for
the rigid body: four coordinates are needed to locate its center of mass and there are
six possible rotation angles. Now, in the case of the n particles with fixed distances,
we need 4n coordinates to locate the particles´ centers of mass, while the number of
distances is still n(n−1)

2 . And the number of possible rotation angles is obtain observing
that a ”hiperplane” can be defined with four points and that the number of diferent
ways in which pairs may be chosen from a group of n− 4 particles is given by:

C2
n−4=

(n− 4)!
2!(n− 6)!

=
(n− 4)(n− 5)

2
, (8)

for n ≥ 4.

Then, the number of degrees of freedom of S4 is

N4= 4n−n(n− 1)
2

+
(n− 4)(n− 5)

2
= 10, (9)
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when n ≥ 4,

and

N4 = 4n− n(n− 1)
2

, (10)

when 2 ≤ n ≤ 5,

since the number of possible ϕi is equal to zero for these values of n.

That N4 is equal to ten for any value of n less than or equal to four is consistent
with the fact that ten is also the number of degrees of freedom of a rigid body in
four-dimentional space (four coordinates are needed to locate the center of mass, and
six more to describe the orientation of the body. Indeed, our procedure works for
the four-dimentional as it does for the three-dimensional case. Moreover, we believe
that it works for the general case. We propose that for a system of n particles with
fixed relative distances, immerse in a space of D dimensions, the number of degrees
of freedom is given by:

ND= Dn−n(n− 1)
2

+
(n−D)(n−D − 1)

2
(11)

=
D(D + 1)

2
,when n ≥ D,

and by:

ND = Dn− n(n− 1)
2

, (12)

when 2 ≤ n ≤ D + 1.

These results coincide entirely with those which would have been obtained by
viewing SD as a single body.

Counting the number of degrees of freedom of SD by consideration of the individual
particles is something which had never been done before. Just the three-dimensional
case proved to be complicated enough. Even for Albert Einstein, who was never able
to write the correct expressions for the number of degrees of freedom of S3 in [5], in
spite of several revisions he made of this book.

There seemed to be contradictions between the values of N3 obtained viewing S3

as a sole body and those reached by considering the individual particles. This was
only because the count of the degrees of freedom of S3 from the latter standpoint was
never done properly. In this paper, we prove that both methods are equivalent, not
only in three, but in any number D of dimensions.

This may be of interest for those who study the Kinetic Theory of Gases. In the
Kinetic Theory of Gases and more specifically, in the Ideal Gas Model, the internal
energy and the heat capacities at constant volume and constant pressure of an ideal
gas are calculated as functions of the degrees of freedom of the gas, which are counted
per molecule. And for molecules consisting of more than one atom, the number of
degrees of freedom is calculated treating the molecules as rigid bodies. Thus, a
diatomic molecule has five degrees of freedom and a polyatomic molecule has six.
According to the Equipartition of Energy Theorem, each of these degrees of freedom
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is associated to an energy of quantity 1
2kT . Hence, the internal energy U of a diatomic

molecule is U = 5
2kT and that of a polyatomic molecule is U = 3kT . Multiplying

these results by Avogadro´s number, NA = 6× 1023, gives the internal energy of an
ideal gas, which is U = 5

2NAkT = 5
2RT and U = 3NAkT = 3RT for diatomic and

polyatomic gases, respectively [6],[7].

The heat capacity at constant volume Cv is related to the internal energy by
the expression Cv =

(
∂U
∂T

)
, thus Cv = 5

2R for diatomic gases and Cv = 3R for the
polyatomic ones. The heat capacity at constant pressure Cp is given by Cp = Cv +R.

The values of the heat capacities predicted using the Ideal Gas Model agree very
well with the values obtained experimentally in the case of diatomic gases, but fall
rather short for polyatomic gases [6], [7]. This is due to the fact that besides the
energies associated with the traslational and rotational degrees of freedom, there is
also vibrational energy. This vibrational energy is quanticized, which means that it
does not spread over a continuous spectrum of values, but is distributed in discrete
states [7], [8].

In the case of most diatomic molecules, the difference between the state of low-
est energy (the ground state) and the state that follows is such, that the leap from
the ground state to the next may only be achieved at temperatures of approximately
3500 K. Thus, at room temperatures, the vibrational energy will remain in the ground
state and its contributions to the total internal energy of the molecule is negligible.
Something very different occurs with polyatomic gases, where the molecules have
several independent vibration modes. For some of this modes, the spacing between
energy states is considerably smaller than for diatomic molecules. Hence, the vibra-
tional energy will make an important contribution to the total internal energy of a
polyatomic molecule at room temperature, or even less. Once the vibrational energy
is considered, the predicted heat capacities have a very good correspondence with
experimental values [8],[9].

Anyhow, the aditional consideration of this quanticized vibrational energy does
not modify the fact that the rotational and traslational energies of a gas molecule
are calculated by treating this molecule as a rigid body. Treating molecules as rigid
bodies is correct, but it had never been formally justified. This work gives a formal
justification to this procedure.

Furthermore, we believe that this paper clarifies the so-called ”degree of freedom
paradox”. This paradox consists in that, if we make a microscopical analysis of a
system which treated as a rigid body has a finite number of degree of freedom, it
turns out that it has an infinite number of degrees of freedom and therefore, infinite
heat capacities, which is absurd [10]. This contradiction was attributed to a flaw in
classical mechanics. Our work suggests that rather, it is a result of not knowing how
to count the number of degrees of freedom particle by particle.

This work may also imply that statements like the following are not correct. Ac-
cording to Herbert Goldstein, ”a rigid body with N particles can at most have 3N
degrees of freedom”, as can be read in his Classical Mechanics textbook [3], in the
chapter dealing with the kinematics of rigid body motion. However, our analysis
shows that the maximum number of degrees of freedom for any rigid body in three
dimensional space is six.

In conclusion, we obtained expression which yield the number of degrees of free-

Revista de Ciencias Básicas UJAT, 6(1)Junio 2007 p 17–24



24 Jorge Bernal, Roberto Flowers-Cano y Adrian Carbajal-Dominguez

dom of a rigid body constituted by n particles in a three-dimensional space and we
extended our results to an arbitrary number D of spatial dimentions. The results for
the three-dimensional case disagree with those obtained by Albert Einstein and which
appear in [5]. We believe that with our analysis of the three-dimentional case we can
justify, formally, that a rigid non-linear polyatomic molecule allways has six degrees
of freedom, situation which has not been sufficiently explained in literature, in spite
of its widespread use in the calculation of the internal energies and heat capacities of
ideal polyatomic gases.

We thank Trinidad Cruz-Sánchez for his valuable contribution to the fulfillment of
this work.
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