On Riemann-Liouville Operators for Functions of One and Several Variables

Autores/as

DOI:

https://doi.org/10.19136/jobs.a11n30.6444

Palabras clave:

Fractional Integral , Fractional Derivative, Operators, Trajectory, Path, Differential , Partial, Generalization

Resumen

In this contribution, we present generalizations of path integrals from Multivariable Calculus to develop new fractional total differentials, extending the classical differentials for functions defined on Euclidean spaces. We explore and discuss several examples and key properties of these novel operators. Additionally, we conclude with a comparative analysis of our proposed operators alongside existing ones found in the literature.

Referencias

Stefan G. Samko, Anatoly A. Kilbas, and Oleg I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach Science Publishers, 1993.

Anatoly Kochubei and Y. Luchko, Eds., Handbook of Fractional Calculus with Applications, vol. 1, 8 vols. Berlin/Boston: De Gruyter, 2019.

M. A. Aziz-Alaoui, ”Study of a Leslie-Gower-type tritrophic population model”, Chaos, Solitons & Fractals, vol. 14, no. 8, pp. 1275-1293, Nov. 2002, doi: 10.1016/S0960-0779(02)00079-6.

H.-L. Li, L. Zhang, C. Hu, Y.-L. Jiang, and Z. Teng, ”Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge”, J. Appl. Math. Comput., vol. 54, no. 1?2, pp. 435-449, Jun. 2017, doi: 10.1007/s12190-016-1017-8.

F. G´omez, J. Rosales, and M. Gu´ıa, ”RLC electrical circuit of non-integer order”, Open Physics, vol. 11, no. 10, pp. 1361-1365, Oct. 2013, doi: 10.2478/s11534-013-0265-6.

J. F. Gomez-Aguilar, T. Cordova-Fraga, J. E. Escalante-Mart´ınez, C. Calderon-Ramon, and R. F. Escobar-Jimenez, ”Electrical circuits described by a fractional derivative with regular

Kernel”, Rev. Mex. Fis., 2016

S. Soulaimani and A. Kaddar, ”Analysis and Optimal Control of a Fractional Order SEIR Epidemic Model With General Incidence and Vaccination”, IEEE Access, vol. 11, pp. 81995- 82002, 2023, doi: 10.1109/ACCESS.2023.3300456.

S. Mangal, O. P. Misra, and J. Dhar, ”Modeling infectious respiratory diseases considering fear effect and latent period”, Results in Control and Optimization, vol. 16, p. 100439, Sep. 2024, doi: 10.1016/j.rico.2024.100439.

S. Borjon-Espejel, J. E. Escalante-Martinez, and P. Padilla-Longoria, ”Newtonian gravity and MOND: a fractional Fourier approach”, Indian J Phys, vol. 96, no. 12, pp. 3405-3411, Oct. 2022, doi: 10.1007/s12648-022-02296-1.

J. Mendiola-Fuentes, E. Guerrero-Ruiz, and J. Rosales-Garc´ıa, ”Multivariate Mittag-Leffler Solution for a Forced Fractional-Order Harmonic Oscillator”, Mathematics, vol. 12, no. 10, p. 1502, May 2024, doi: 10.3390/math12101502.

V. E. Tarasov and S. S. Tarasova, ”Fractional Derivatives and Integrals: What Are They Needed For?”, Mathematics, vol. 8, no. 2, p. 164, Jan. 2020, doi: 10.3390/math8020164.

S. T. Mohyud-Din, A. Ali, and B. Bin-Mohsin, ”On biological population model of fractional order”, Int. J. Biomath., vol. 09, no. 05, p. 1650070, Sep. 2016, doi: 10.1142/S1793524516500704.

X. Zhou, Y. Mao, C. Zhang, and Q. He, ”A Comprehensive Performance Improvement Control Method by Fractional Order Control”, IEEE Photonics J., vol. 10, no. 5, pp. 1-11, Oct. 2018, doi: 10.1109/JPHOT.2018.2865032.

V. E. Tarasov, Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media. in Nonlinear physical science. Beijing: Higher Education Press, 2010.

V. E. Tarasov, ”General Fractional Calculus in Multi-Dimensional Space: Riesz Form”, Mathematics, vol. 11, no. 7, p. 1651, Mar. 2023, doi: 10.3390/math11071651.

M. Al-Refai and Y. Luchko, ”The General Fractional Integrals and Derivatives on a Finite Interval”, Mathematics, vol. 11, no. 4, p. 1031, Feb. 2023, doi: 10.3390/math11041031.

T. Yajima and H. Nagahama, ”Differential geometry of viscoelastic models with fractionalorder derivatives”, J. Phys. A: Math. Theor., vol. 43, no. 38, p. 385207, Sep. 2010, doi: 10.1088/1751-8113/43/38/385207.

T. Yajima and K. Yamasaki, ”Geometry of surfaces with Caputo fractional derivatives and applications to incompressible two-dimensional flows”, J. Phys. A: Math. Theor., vol. 45, no. 6, p. 065201, Feb. 2012, doi: 10.1088/1751-8113/45/6/065201.

G. Calcagni, ”Geometry of fractional spaces”, Advances in Theoretical and Mathematical Physics, vol. 16, no. 2, pp. 549-644, 2012, doi: 10.4310/ATMP.2012.v16.n2.a5.

W. Saleh, ”Fractional Order Riemann Curvature Tensor in Differential Geometry”, Int. J. Anal. Appl., vol. 20, p. 26, May 2022, doi: 10.28924/2291-8639-20-2022-26.

M. ¨ Ogrenmis, ”Geometry of Curves with Fractional Derivatives in Lorentz Plane”, Journal of New Theory, no. 38, pp. 88-98, Mar. 2022, doi: 10.53570/jnt.1087800.

F. R. Lopez and O. Rubio, ”A New Fractional Curvature Of Curves Using The Caputo’s Fractional Derivative”, Advanced Mathematical Models & Applications, vol. 8, no. 2, pp. 157-175, 2023.

G. Sales Teodoro, J. A. Tenreiro Machado, and E. Capelas De Oliveira, ”A review of definitions of fractional derivatives and other operators”, Journal of Computational Physics, vol. 388, pp. 195-208, Jul. 2019, doi: 10.1016/j.jcp.2019.03.008.

J. Liouville, ”M´emoire sur quelques questions de g´eometrie et de m´ecanique, et sur un nouveau genre de calcul pour r´esoudre ces questions”, J. l’Ecole Roy. Polythecn., vol. 13, pp. 1-69, 1832.

B. Riemann, ”Versuch einer allgemeinen Auffassung der Integration und Differentiation”, Gesammelte Mathematische Werke und Wissenchaftlicher, pp. 331-344, 1876.

Igor Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, vol. 198. in Mathematics in Science and Engineering, vol. 198. United States of America: Academic Press, 1999.

Anatoly A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo, Theory And Applications of Fractional Differential Equations. in North-Holland Mathematical Studies, no. 204. Elsevier, 2006.

K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, vol. 2004. in Lecture Notes in Mathematics, vol. 2004. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-14574-2.

J. Cheng and W. Dai, ”Fractional Vector Taylor and Cauchy Mean Value Formulas”, Journal of Fractional Calculus and Applications, vol. 11, no. 2, pp. 130-147, Jul. 2020.

Tom M. Apostol, Calculus II: C´alculo con funciones de varias variables y ´algebra lineal, con aplicaciones a las ecuaciones diferenciales y las probabilidades, 2nd ed., vol. 2, 2 vols. Espa˜na: Editorial Revert´e, 1976.

V. A. Zorich, Mathematical Analysis I. in Universitext. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. doi: 10.1007/978-3-662-48792-1.

Halsey Royden and Patrick Fitzpatrick, Real Analysis, 4th ed. China Machine Press, 2010.

G. B. Arfken and H.J. Weber, Mathematical Methods for Physicists, 6th ed. Boston: Elsevier, 2005.

Lynn H. Loomis and Shlomo Sternberg, Advanced Calculus. Jones and Bartlett Publishers, 1990.

R. Hilfer and Y. Luchko, ”Desiderata for Fractional Derivatives and Integrals”, Mathematics, vol. 7, no. 2, p. 149, Feb. 2019, doi: 10.3390/math7020149.

Descargas

Publicado

2025-04-30

Número

Sección

Artículo científico

Cómo citar

Balcazar Araiza, R., & Navarro Soza, J. M. (2025). On Riemann-Liouville Operators for Functions of One and Several Variables. Journal of Basic Sciences, 11(30), 1-15. https://doi.org/10.19136/jobs.a11n30.6444