Impacto de la discretización numérica del modelo de variación total de eliminación de ruido.

Autores/as

DOI:

https://doi.org/10.19136/jobs.a11n30.6447

Palabras clave:

Eliminación de ruido, modelo variacional, ecuaciones diferenciales parciales, optimización, procesamiento de imágenes.

Resumen

En este trabajo, se comparan diferentes técnicas de discretización numérica, así como algoritmos de optimización para hallar la solución del model de variación total de eliminación de ruido propuesto por Rudin, Osher y Fatemi en 1992. De igual forma, se realiza un análisis cualitativo y cuantitativo de los resultados obtenidos.

Referencias

Jin, Cong, and Luan, Ningli. “An image denoising iterative approach based on total variation and weighting function”. Multimedia Tools and Applications 79.29 (2020): 20947–20971.

Caselles, Vicent, Chambolle, Antonin, Novaga, Matteo, and others. “Total Variation in Imaging.”. Handbook of mathematical methods in imaging 1.2 (2015): 3

Tang, Liming, and Fang, Zhuang. “Edge and contrast preserving in total variation image denoising”. EURASIP Journal on Advances in Signal Processing 2016. (2016): 1–21.

Strong, David, and Chan, Tony. “Edge-preserving and scale-dependent properties of total variation regularization”. Inverse problems 19.6 (2003): S165.

Rudin, Leonid I, Osher, Stanley, and Fatemi, Emad. “Nonlinear total variation based noise removal algorithms”. Physica D: nonlinear phenomena 60.1-4 (1992): 259–268.

Chan, Tony F, Zhou, Hao Min, and Chan, Raymond Hon-fu. Continuation method for total variation denoising problems. Vol. 2563.

Saxena, Chandrika, and Kourav, Deepak. “Noises and image denoising techniques: A brief survey”. International journal of Emerging Technology and advanced Engineering 4.3 (2014): 878–885.

Chambolle, Antonin, and Lions, Pierre-Louis. “Image recovery via total variation minimization and related problems”. Numerische Mathematik 76. (1997): 167–188.

Ivan May-Cen, Ricardo Legarda-Saenz, and Carlos Brito-Loeza . “A Variational Model for Wrapped Phase Denoising”. Mathematics 12. (2023).

Fan, Linwei, Zhang, Fan, Fan, Hui, and Zhang, Caiming. “Brief review of image denoising techniques”. Visual Computing for Industry, Biomedicine, and Art 2.1 (2019): 7.

Kim, Donghwan, and Fessler, Jeffrey A. “Optimized first-order methods for smooth convex minimization”. Mathematical programming 159. (2016): 81–107.

Vogel, Curtis R, and Oman, Mary E. Ïterative methods for total variation denoising”. SIAM Journal on Scientific Computing 17.1 (1996): 227–238.

Bezanson, Jeff, Edelman, Alan, Karpinski, Stefan, and Shah, Viral B. “Julia: A fresh approach to numerical computing”. SIAM Review 59.1 (2017): 65–98.

Wang, Z. Bovik, A.C. Sheikh, H.R. and Simoncelli, E.P. “Image Quality Assessment: From Error Visibility to Structural Similarity”. IEEE Transactions on Image Processing 13.4 (2004): 600–612.

Setiadi, De Rosal Igantius Moses. “PSNR vs SSIM: imperceptibility quality assessment for image steganography”. Multimedia Tools and Applications 80.6 (2020): 8423–8444.

Vese, L.A. and Guyader, C.L. Variational Methods in Image Processing. CRC Press.

Descargas

Publicado

2025-04-30

Número

Sección

Artículo científico

Cómo citar

Martinez Ku, N. A., Legarda Saenz, R., & Brito Loeza, C. F. (2025). Impacto de la discretización numérica del modelo de variación total de eliminación de ruido. Journal of Basic Sciences, 11(30), 32-44. https://doi.org/10.19136/jobs.a11n30.6447