An unstructured finite-volume method for the two-dimensional conservative transport equation

Autores/as

  • Reymundo Ariel Itza Balam Centro de Investigación en Matemática
  • Uh Zapata, Miguel Centro de Investigación en Matemáticas, A.C.

DOI:

https://doi.org/10.19136/jobs.a11n30.6459

Palabras clave:

Finite-volume method, conservative transport equation, unstructured grid, upwind scheme, second order of accuracy, flux limiter

Resumen

In this paper, we present a second-order, time- and space-accurate method for solving conservative transport equation in two-dimensional domains. The spatial discretization is based on a finite volume approach using triangular cells of arbitrary shape. A θ-method is employed for the time integration. A second-order upwind scheme with a Local Extremum Diminishing flux limiter formulation is proposed to approximate the advective terms. The numerical method is validated against classical advection test cases, including different characteristic functions and type of grids. Finally, several tests are conducted to demonstrate the capabilities of the proposed scheme.

Referencias

LeVeque RJ. High-resolution conservative algorithms for advection in incompressible flow. SIAM Journal Numerical Analysis, 1996; 33(2):627-65.

Osher S, Fedkiw RP. Level set method: an overview and some recent results. J. Comput. Phys. 2001; 169:463-502.

Sethian JA, Smereka P. Level set methods for fluids interfaces. Annu. Rev. Fluid Mech. 2003; 35:341-372.

Uh Zapata, M., Itzá Balam, R. A conservative level-set/finite-volume method on unstructured grids based on a central interpolation scheme. J. Comput. Phys., 444, 110576, 2021.

Uh Zapata, M., Itzá Balam, R. A 3D Two-Phase Conservative Level-Set Method Using an Unstructured Finite-Volume Formulation. In Mathematical and Computational Models of Flows and Waves in Geophysics (pp. 67-101). Springer International Publishing, 2022.

Kees CE, Akkerman I, Farthing MW, Bazilevs Y. A conservative level set method suitable for variable-order approximations and unstructured meshes. J. Comput. Phys., 2011; 230:4536-4558.

Ito K, Kunugi T, Ohshima H, Kawamura T. (2013). A volume-conservative PLIC algorithm on three-dimensional fully unstructured meshes. Computers & Fluids, 2013; 88, 250-261.

Balc'{a}zar N, Jofre L, Lehmkuhl O, Castro J, Rigola J. A finite-volume/level-set method for simulating two-phase flows unstructured grids. International journal of multiphase flow, 2014; 64:55-72.

Xie B, Peng J, Feng X. An unstructured-grid numerical model for interfacial multiphase fluids based on multi-moment finite volume formulation and THINC method. International Journal of Multiphase Flow, 2017; 89:375-398.

Li LX, Liao HS, Qi LJ. An improved r-factor algorithm for TVD schemes. International Journal of Heat and Mass Transfer, 2008; 51(3-4):610-617.

Lien FS. A pressure-based unstructured grid method for all-speed flows, Int. J. Numer. Meth. Fluids 2000; 33:355-374.

Vidovi{'c} D, Segal A, Wesseling P. A superlinearly convergent Mach-uniform finite volume method for the Euler equations on staggered unstructured grids. Journal of Computational Physics 2006; 217(2):277-294.

Eymard R, Gallouet T, Herbin R. Finite Volume Methods, Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal.,VII, North-Holland, Amsterdan 2000.

Descargas

Publicado

2025-04-30

Número

Sección

Artículo científico

Cómo citar

Itza Balam, R. A., & Uh Zapata, M. A. (2025). An unstructured finite-volume method for the two-dimensional conservative transport equation. Journal of Basic Sciences, 11(30), 16-31. https://doi.org/10.19136/jobs.a11n30.6459