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Abstract

En este art́ıculo, se demuestra que para un conjunto de nivel no vaćıo Rk, k 2 R,
asociado a una funcion diferenciable f : Rn �! R, los puntos regulares no doblemente

aislados contenidos en Rk son puntos frontera de los conjuntos abiertos R<k y R>k,

los cuales corresponden a las uniones disjuntas (izquierda o derecha) que contienen

los demás conjuntos de nivel que son complementarios a Rk. Además, se prueba que

los puntos cŕıticos doblemente aislados son puntos frontera de solo uno de estos con-

juntos abiertos complementarios. La propiedad de ser frontera se deriva únicamente

usando la estructura diferenciable del mapeo f que no necesariamente es de clase C
1
;

en particular, se utilizan propiedades del gradiente y el comportamiento de f cerca

de los puntos regulares o bien de los puntos cŕıticos. Finalmente, se proporcionan

fórmulas para comparar los conjuntos interior, frontera y exterior de Rk y R�k, con

los conjuntos correspondientes a R<k y R>k.

In this paper we prove that, given a non empty level set Rk, k 2 R, for a di↵erentiable

function f : Rn �! R, regular points and non doubly isolated critical points con-

tained in Rk are simultaneously boundary points of the open sets R<k and R>k, which

correspond to the disjoint union (either left or right) containing the complementary

level sets to Rk. Moreover, we prove that doubly isolated critical points are boundary

points of only one of them. The property to be boundary is only derived by using the

di↵erentiable structure of f which is not necessarily a C
1
map, in particular, we use

properties of gradient and the behavior of f around either regular or critical points.

Finally, relating formulas are given to compare interiors, boundaries and exteriors of

Rk and R�k, with the corresponding to R<k and R>k.

Keywords: Di↵erentiable function, Critical points, Isolated points, Level sets, Bound-

aries

1. Introduction

Let n be a positive integer, k 2 R and f : Rn �! R be a map defined in the Euclidean
topological space Rn. A common way to deal with regions of Rn is by means of either
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Level sets as boundaries 1

inequalities or equalities, which may be used to define explicitly such regions,

a) R�k := {~p 2 Rn : f (~p) � k}, b) Rk := {~p 2 Rn : f (~p)  k},
c) R>k := {~p 2 Rn : f (~p) > k}, d) R<k := {~p 2 Rn : f (~p) < k},
e) R 6=k := {~p 2 Rn : f (~p) 6= k}, f) Rk := {~p 2 Rn : f (~p) = k}.

(1)

The case of equality is usually known as a level set in Rn. Moreover, the fact that Rn

is the domain of f , implies that we may stratify the space Rn by means of the level
sets of f ,

Rn = R<k [Rk [R>k.

Sometimes one needs to study the topological behavior of these regions considering
the topological structure of Rn. If f is continuous and Rn has the usual topology, one
can say that the regions a), b) and f) in (1) are closed subsets in Rn, and regions c),
d) and e) are open. Although these last facts are clear, some topological properties
related with these sets are not so easy to identify. This is the case for limit points
which are relevant in analytical processes. For instance, if given a subset M of Rn, one
needs to establish its derived set M 0, one has to calculate the closure M of M , the set
of isolated points Iso (M) of M , and to take the relative di↵erence M 0 = M�Iso (M).
By the way, the sets M and Iso (M) are closely related with the boundary set @M of
M , since M = M [ @M and Iso (M) ⇢ @M . Hence, in this approach we are dealing
with the boundary set of M , and therefore notice that the boundary @M also provides
us with the interior M

� and the exterior Ext (M) of M , since M
� = M � @M and

Ext (M) = Rn �M = M
c

(see [4]). We mention at this moment that for topological
purposes, our principal interest in a subset M of Rn is to determine the boundary set
@M and the isolated set Iso (M) of M .

Coming back to the sets given by the relations (1), we may assert that the boundary
of fifth and sixth regions is the sixth one of them. It seems to be that the level set
Rk satisfies to be the common boundary of all the regions given in (1); but this is
not always the case for first, second, third and fourth regions. Consider the following
case. Let

F (x, y) = x (x+ 7)2 � (x+ 2y � 5)2 ,

B1 =
n
(x, y) : x (x+ 7)2 � (x+ 2y � 5)2 > 0

o

and
A1 =

n
(x, y) : x (x+ 7)2 � (x+ 2y � 5)2 = 0

o
.

In this occasion, A1 has an isolated point given by ~p1 = (�7, 6) which is not a
boundary point for B1. It is of interest that, in contrast, the “complementary” open
region given by

C1 =
n
(x, y) : x (x+ 7)2 � (x+ 2y � 5)2 < 0

o

has whole A1, including the isolated point, as its boundary. See the figure 1.

Due to these negative cases, it is important to consider the analytical character
of a point in the level set. For the above example, we have that the gradient of F ,
rF , vanishes in (�7, 6). In other words, (�7, 6) is a critical point for F . But, is it
always the same situation for all the critical points of a scalar field which are in the
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2 M. A. Dela–Rosa and José-Leonardo Sáenz-Cetina

corresponding level set? Again, the answer is negative. To see this, just take a look
of the following examples,

G (x, y) = (x+ 10) (x+ 2)2 � (x+ 2y � 5)2 ,

~p2 = (�2, 7/2) ,

A2 =
n
(x, y) : (x+ 10) (x+ 2)2 � (x+ 2y � 5)2 = 0

o
, (2)

B2 =
n
(x, y) : (x+ 10) (x+ 2)2 � (x+ 2y � 5)2 > 0

o
,

C2 =
n
(x, y) : (x+ 10) (x+ 2)2 � (x+ 2y � 5)2 < 0

o
,

and

H (x, y) = (x+ 4)3 � (x+ 2y � 5)2 ,

~p3 = (�4, 9/2) ,

A3 =
n
(x, y) : (x+ 4)3 � (x+ 2y � 5)2 = 0

o
, (3)

B3 =
n
(x, y) : (x+ 4)3 � (x+ 2y � 5)2 > 0

o
,

C3 =
n
(x, y) : (x+ 4)3 � (x+ 2y � 5)2 < 0

o
.

See figures 2 and 3. In both examples, the critical points are inside the level set
and they are boundary points of the two corresponding open regions.

Figure. 1
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Level sets as boundaries 3

Figure. 2

Figure. 3

The aim of this paper is to show that, on one hand, the regular and non isolated
critical points are boundary points of both R>k and R<k, and on the other hand,
when the dimension n is greater than or equals to 2, the isolated critical points
are boundary points of either R>k or R<k but not both. We may precise the last
statement by stating that if a point ~p in Rk is isolated then either ~p is a boundary
point of R>k if and only if f(~p) = k is a local minimum, or ~p is a boundary point of
R<k if and only if f(~p) = k is a local maximum. That is we prove the following main
theorem.

Theorem 1. Assume f : Rn �! R is a di↵erentiable map and A 6= ;, then the
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4 M. A. Dela–Rosa and José-Leonardo Sáenz-Cetina

following statements holds.

1. The regular points of f which are in Rk are boundary points both of R>k and of R<k.

2. The isolated critical points of f which are in Rk and are not doubly isolated, are

boundary points both of R>k and of R<k.

3. If n � 2, the isolated points of Rk are doubly isolated critical points of Rk, and they

are boundary points of either R>k or R<k but not both. Symbolically,

Iso (Rk) = (Iso (Rk) \ @R>k) [ (Iso (Rk) \ @R<k) ,

and

Iso (Rk) \ @R>k \ @R<k = ;.
Moreover, if ~a is an isolated point of Rk, then we have the following: ~a is a boundary

point of R>k if and only if f (~a) = k is a local minimum; ~a is a boundary point of R<k

if and only if f (~a) = k is a local maximum.

As an immediate result we obtain the Corollary 2 which states that when the only
critical points of f which are inside Rk are isolated but non doubly isolated, it holds
that

R>k 6= ; 6= R<k, @R<k = Rk = @R>k. (4)

When one preserves the condition of isolation of the critical points but now we
consider the regions given by the non strict inequalities R�k and Rk, one can prove
the following main theorem, which states that there is an obstruction to have the
analogous of equation (4).

Theorem 2. Assuming f : Rn �! R is a di↵erentiable map, n � 2, and that the
only critical points of f which are in Rk are isolated, then we have the following facts:

R
�
�k

= R>k [ (Iso (Rk) \ @R>k) = R>k [ (Iso (Rk)� @R<k) ,

@R�k = Rk � (Iso (Rk) \ @R>k) = Rk � (Iso (Rk)� @R<k) ,

Ext (R�k) = R<k,

(5)

R
�
k

= R<k [ (Iso (Rk) \ @R<k) = R<k [ (Iso (Rk)� @R>k) ,

@Rk = Rk � (Iso (Rk) \ @R<k) = Rk � (Iso (Rk)� @R>k) ,

Ext (Rk) = R>k.

(6)

Notice that while Corollary 2 gives enough conditions to have that Rk is the com-
mon boundary of R>k and R<k, Theorem 2 gives more information since it involves
not only the boundaries but the corresponding interior and exterior sets and contem-
plate the cases where the isolated critical points are also topologically isolated (see
figure 1).

We want to point out that we do not include the case n = 1 because the doubly
isolated points p make a disconnection on the open intervals B(p) which are neigh-
borhood of p in the sense that B(p) � {p} is not connected while for n � 2 it is not
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the case, we use this last fact on our results as one can see in the corresponding proofs
(see the proof of Theorems 1 and 2). As one may check, if f(x) = x

3
, x 2 R,

A = {0}, B = R+, C = R�,

@C = A = @B but in our result 3) of Theorem 1 the statement is that A is boundary
of only one of them B or C, which does not holds in this example.

Notice that our results are given when the domain of the map f is whole Rn instead
of only an open proper subset ⌦, for instance, consider the cusp f(x, y) = y

2 � x
3.

In this example,

R<k = {(x, y) : y2 < x
3 + k}, Rk = {(x, y) : y2 = x

3 + k},

R>k = {(x, y) : y2 > x
3 + k}

hence if k < 0, then each point in R<k [Rk is a regular point while R>k has the only
one point (0, 0) as critical point. One observes that if the map f(x, y) is restricted to
a proper open subset ⌦ ⇢ R2, in R>k it may occur that eventually the critical point
does not belong to ⌦.

Rk, k < 0 Rk, k > 0

Rk, k = 0
Figure. 4

Another point to note is that the above examples consider two kind of critical points,
the isolated and the non isolated in topological sense. Hence, these examples (see
Figures 2 and 3) also show that we will deal with di↵erentiable functions f : Rn �! R
such that their critical points are not necessarily non degenerate (recall from calculus
that a critical point is non degenerate if the determinant of the second derivative at
such critical point is di↵erent from zero, see [1]) and therefore we are not interested
in using proof techniques which consider second derivative criterion. In this sense,
the mathematical tools used in our proofs are classical and hence elementary by
considering that the map f is di↵erentiable but not necessarily a C

1 function (see
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6 M. A. Dela–Rosa and José-Leonardo Sáenz-Cetina

Proof of (1) in Theorem 1). However, if f is a C
` function, for instance ` = 2 and

n = 2, one obtains a well known classification of the critical points inside a level set; to
do that, given a critical point ~x in Rk one uses the determinant of the Hessian matrix
of f at ~x, H(f)~x, in order to get the basic types of singular points: If H(f)~x > 0, ~x is
an isolated point; if H(f)~x < 0, ~x is a double point; if H(f)~x = 0, ~x is either a cusp
of the first or second kind, or an isolated point or a tacnode (see [2, Sec. 15]). In our
proofs we do not use these kind of results.

Certainly, there are very ample theories that develop the comprehensive study of
the level sets associated to a di↵erentiable map f between more general objects called
manifolds but the corresponding results are heavily supported on the assumption that
the map f is actually of class C`, for at least ` � 1 (see [3]) which, e↵ectively, gives
stronger results which involve nice descriptions of the topological behavior of the level
sets of f , for instance, we may look at the Intersection Numbers, Euler Characteristic
and Morse Theory (see [3]).

2. Notation

We will recall standard notation (see [4] and [1]). Let n be a positive integer, R be the
field of the real numbers, and Rn be the euclidean space of dimension n over R, with
the standard inner product given in the following way: if (a1, . . . , an) , (b1, . . . , bn) 2
Rn, then

(a1, . . . , an) · (b1, . . . , bn) = a1b1 + . . .+ anbn.

Since this inner product is positive definite and non degenerated, we may establish
the canonical norm as usual,

k(a1, . . . , an)k = [(a1, . . . , an) · (a1, . . . , an)]
1
2 .

Also, remember Cauchy-Schwarz’s inequality,

|(a1, . . . , an) · (b1, . . . , bn)|  k(a1, . . . , an)k k(b1, . . . , bn)k ,

and that the equality holds only when the vectors are linearly dependent; which, for
non zero vectors, means that they are parallel. By the way, we represent the vectors
with top arrow letters; that is, ~a = (a1, . . . , an). Continuing, using the norm we define
the distance between vectors as usual,

d(~a,~b) = ||~b� ~a||.

Besides, this metric allows us to establish the canonical topology for Rn generated by
the open balls B (~a; r), with r > 0, which are defined by

B (~a; r) = {~p : k~p� ~ak < r} .

With respect to R, the open ball corresponds with the open interval B (a; r) =
(a� r; a+ r). We may consider also the infinite intervals given by

(a; +1) = {x : a < x} , (�1; a) = {x : x < a} ,
[a; +1) = {a} [ (a; +1) , (�1; a] = (�1; a) [ {a} .

Since the usual topology of Rn is generated by the open balls, we have to say that
a subset of Rn is open if it is the union of open balls. A closed subset of Rn is
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the complement of an open subset of Rn. By the way, if S is a subset of Rn, its
complement is denoted by S

c. Now, let f : Rn �! R be a map. We say that f is
continuous if for every open subset T of R we have that its preimage f

�1 (T ) is an
open subset of Rn. Let ~a 2 Rn. We say that f is di↵erentiable in ~a if there exist
r > 0 and a map E : B(~0; r) �! R continuous in ~0 such that, for every ~b 2 B (~a; r),
it holds that

f(~b) = f(~a) +rf(~a) · (~b� ~a) + ||~b� ~a||E(~b� ~a)

where
lim

~b�!~a

E
�
~b� ~a

�
= E(~0) = 0.

The above formula is called the Taylor’s formula of first order for f about ~a (see [1]).

Finally, we recall the definition of regular and critical points. Let S ⇢ Rn, ~a be an
inner point of S, and f : S �! R be a map.

Definition 1. Assume f is di↵erentiable at ~a, and let T ⇢ S, ~a 2 T . The point ~a is

1. a regular point of f if rf (~a) 6= ~0;

2. a critical point of f if rf (~a) = ~0;

3. an isolated critical point of f if ~a is a critical point of f and if there exists r > 0 such

that, in B (a; r), ~a is the only critical point of f ;

4. a doubly isolated critical point of T if ~a is an isolated critical point of f and an isolated

point of T .

3. The results

3.1 Topological properties for level sets of continuous maps

Let f : Rn �! R be a continuous map. In order to simplify the notation along our
proofs we choose

B = R>k, A = Rk, C = R<k

according to (1).

Lemma 1. Considering the usual topology of R and Rn, we have the following prop-
erties:

1. Disjunction. A, B and C are pairwise disjoint.

2. Completeness. A [ B [ C = Rn
.

3. Typology. A is a closed subset and B and C are open subsets of Rn
.

4. Separatization. B and C are separate.

5. Boundary. @B ⇢ A and @C ⇢ A.

6. Emptiness in level sets. If A = ;, then some of the subsets B or C is also empty

and the other one is Rn
.
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Proof. Notice that the proof of 1 and 2 are straightforward. Also, 3 follows directly
from the continuity of f . We will proceed to prove the other statements.

4. (Separatization) It holds that A [B = f
�1 ([k; +1)) because

A [B = f
�1 ({k}) [ f

�1 ((k; +1)) = f
�1 ({k} [ (k; +1)) = f

�1 ([k; +1)) .

Since [k; +1) is a closed subset and since f is continuous, we have that A [ B is a
closed subset. Analogously, we may prove that A [ C is a closed subset. Hence, in
particular, B ⇢ A [B and C ⇢ A [C. Besides, by 1 and 2 of this theorem, we have
that A [B = C

c and A [C = B
c. So, B ⇢ C

c and C ⇢ B
c. Even better, B \C = ;

and C \B = ;; whence B and C are separated.

5. (Boundary) Since B and C are separate, we have that @B ⇢ C
c = A [ B and

@C ⇢ B
c = A[C. Now, since B and C are open subsets, it happens that @B\B = ;

and @C \C = ;. From these two equalities and the previous inclusions, we conclude
that @B ⇢ A and @C ⇢ A.

6. (Emptiness in level sets) Let us assume that A = ;. From 1, we have that
B [C = Rn. Proceeding by contradiction, assume that B 6= ; and C 6= ;. From 4, it
holds now that B and C conform a separation for Rn. But this is an absurd, taking
into account that Rn is connected. Hence, either B = ; or C = ;; but not both of
them, since B [ C = Rn. Finally, if, for instance, B = ;, then

C = ; [ C = A [B [ C = Rn
.

That is, generalizing, some of the subsets B or C is empty and the other one is Rn.

3.2 Regular points and isolated critical points in level sets of di↵erentiable maps

In this subsection f : Rn �! R is a di↵erentiable map and A,B,C are as before.
Assume that A 6= ;. We will prove the main Theorem 1.

3.2.1 Proof of main Theorem 1

Without loss of generality, we choose k = 0; this enables us to simplify the terminology
considerably. Let ~p1 2 A; thus f (~p1) = 0.

We prove 1. Let us assume that ~p1 is a regular point. Hence, rf (~p1) 6= ~0.
First, we will prove that the subsets B and C are not empty. Indeed, let ~u =
rf (~p1) / krf (~p1)k and define the straight line through the point ~p1

L = {~v 2 Rn : there exists t 2 R such that ~v = ~p1 + t~u} ,

which is normal to A at ~p1. We claim that there exists � > 0 such that

B (~p1; �) \ (A \ L) = {~p1} ; (7)

that is, in the open ball B (~p1; �), it happens that A and L only share ~p1 as a common
point. To prove this claim, let us assume, by contradiction, that for every � > 0, there
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Level sets as boundaries 9

exists ~q 2 B (~p1; �) \ (A \ L) such that ~q 6= ~p1. So, 0 < k~q � ~p1k < �, f (~q) = 0 and
~q 2 L. On using Taylor’s formula of first order for f about ~p1, we have that

f (~q) = f (~p1) +rf (~p1) · (~q � ~p1) + k~q � ~p1k E (~q � ~p1) (8)

and
lim
~q!~p1

E (~q � ~p1) = E(~0) = 0.

Substituting f (~p1) = 0 = f(~q) in (8) we obtain

0 = rf (~p1) · (~q � ~p1) + k~q � ~p1k E (~q � ~p1) .

Even better,
rf (~p1) · (~q � ~p1) = �k~q � ~p1k E (~q � ~p1) . (9)

Since ~q 2 L, it holds that rf (~p1) and ~q � ~p1 are parallel, hence Cauchy-Schwarz’s
inequality implies that

|rf (~p1) · (~q � ~p1)| = krf (~p1)k k~q � ~p1k .

Using this equality in (9) we get

krf (~p1)k k~q � ~p1k = |rf (~p1) · (~q � ~p1)| = k~q � ~p1k |E (~q � ~p1)| ,

and taking into account that k~q � ~p1k > 0, we may cancel out this factor in both
sides of the previous chain of equalities obtaining

krf (~p1)k = |E (~q � ~p1)| .

But then, taking the limit as ~q �! ~p1 we have that

krf (~p1)k = lim
~q�!~p1

krf (~p1)k = lim
~q�!~p1

|E (~q � ~p1)| = 0.

Whence krf (~p1)k = 0, and by this rf (~p1) = ~0, which is a contradiction since ~p1 is
a regular point and the claim (7) is proved. Consequently

f (~p1 + t~u) 6= 0, if 0 < |t| < � (10)

since ~p1 + t~u /2 A for all 0 < |t| < �.

Let us define

M = {~v 2 Rn : there exists t 2 (0; �) such that ~v = ~p1 + t~u} ,
N = {~v 2 Rn : there exists t 2 (��; 0) such that ~v = ~p1 + t~u} .

With respect to these sets, there are several facts which are immediately verifiable and
that they are convenient to emphasize for future references. First, we have that M 6=
; and N 6= ; since these sets are the homeomorphic images of the open intervals (0; �)

and (��; 0), respectively, under ~h(t) = ~p1+ t~u. Second, M[{~p1}[N = B (~p1; �)\L.
Besides, no matter if ~v 2 M, or if ~v 2 N , one obtains from (10) that f (~v) 6= 0.
Finally, since the sets M and N are connected and f is continuous and di↵erent from
zero on them, it happens that, applying the intermediate value’s theorem to f(~h(t)),
the sign of f remains the same when it evaluates at the points of M or N .
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10 M. A. Dela–Rosa and José-Leonardo Sáenz-Cetina

The immediate objective is to prove that f changes its sign when it passes from
M to N . For this, let us assume, by contradiction, that the sign of f remains the
same when we evaluate it either in the points of M or in the points of N . Without
loss of generality, we may assume that

if ~v 2 M [N , then f (~v) > 0.

Define the auxiliary real valued composition function

g : (��; �) ! M [ {~p1} [N ! R, g (t) := f (~p1 + t~u) ,

for which it holds that its derivative at the point 0 is given by the directional derivative
in the direction of ~u,

dg

dt
(0) = rf (~p1) ·�!u = rf (~p1) ·

rf (~p1)

||rf (~p1)||
= ||rf (~p1)|| .

On the other hand, g (t) > 0 = g (0), for all t 2 (��; �) � {0}, and then g is a real
di↵erentiable function which has a relative minimum at 0. Hence,

0 =
dg

dt
(0) = ||rf (~p1)|| ,

and so rf (~p1) = ~0 which is a contradiction since ~p1 is regular. Whence, f takes
di↵erent signs depending on whether it evaluates in M or in N . Again, without loss
of generality, we may assume that, if ~v 2 M, then f (~v) > 0, and if ~v 2 N , then
f (~v) < 0. Therefore, M ⇢ B and N ⇢ C. So, B 6= ; and C 6= ;.

To continue with the proof of the first statement, let us prove now that ~p1 is a
boundary point of B. For this, let us begin giving an " > 0. Since, if ~p 2 B, it holds
that f (~p) > 0, and f (~p1) = 0, then ~p1 2 B

c. Hence, ~p1 2 B (~p1; ") \B
c, and by this

B (~p1; ") \B
c 6= ;. Now, let ⌘ = min (�, "). Let us define

P = {~v 2 Rn : there exists t 2 (0; ⌘) such that ~v = ~p1 + t~u} .

It is clear that P 6= ;, besides that P ⇢ M; and by this P ⇢ B. On the other hand,
if ~v 2 P, it happens that

k~v � ~p1k = k~p1 + t~u� ~p1k = kt~uk = |t| = t < ⌘  ".

In brief, k~v � ~p1k < "; that is, ~v 2 B (~p1; "). Since this is valid for every ~v 2 P, we
conclude that P ⇢ B (~p1; ") obtaining that

; 6= P ⇢ B (~p1; ") \B.

Therefore, for every " > 0 it holds that

B (~p1; ") \B 6= ; and B (~p1; ") \B
c 6= ;.

Hence, ~p1 is a boundary point of B; that is, ~p1 2 @B. Analogously, one may prove
for C that ~p1 2 @C.

We now prove 2. Let us assume that ~p1 is an isolated critical point, but that it is not
doubly isolated critical point of A. In this occasion, there exists � > 0 such that, in
B (~p1; �), it happens that ~p1 is the only critical point of f . Starting with the subject,
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likewise the previous proof of statement (1), let us begin by proving that B and C

are not empty (notice that in contrast to the previous case rf(~p1) = 0). For this let
us assume, by contradiction, that B = ; or C = ;. Without loss of generality we may
assume that B = ;. Hence by Lemma 1 A [ C [B = Rn. Since B (~p1; �) \B = ;, it
holds that B (~p1; �) ⇢ A [ C. Let us prove that being B empty implies that

(B (~p1; �)� {~p1}) \A = ;. (11)

To begin with, we use again a proof by contradiction. If we assume that

(B (~p1; �)� {~p1}) \A 6= ;,

then there exists ~q 2 (B (~p1; �)� {~p1}) \ A. Moreover, ~q 2 B (~p1; �), ~q 6= ~p1, which
implies that ~q cannot be a singular point of f , that is, ~q is a regular point of f . Now,
since ~q 2 A, it follows from the proved statement (1), that ~q is a boundary point of
B. That is, q 2 @B and @B 6= ; which contradicts that @B = ; since B = ;. Hence,
(11) is proved; that is, ~p1 is an isolated point of A; which means that ~p1 is a doubly
isolated critical point of A contradicting our hypothesis. Hence, B 6= ;. Similarly,
one may prove that C 6= ;.

Let us proceed to the demonstration that ~p1 is a boundary point of B and C; which
again it su�ces to provide only for the case of B. Let us give " > 0; and let us define
⌘ = Min (�, "). Since, in this case, ~p1 is not a doubly isolated critical point of A, it
cannot be an isolated point of A, in particular we have that (B (~p1; ⌘)� {~p1})\A 6= ;.
As we have examine before, this implies that there exists a regular point ~q of f such
that ~q 2 B (~p1; ⌘) \ A; more precisely, ~q 2 B (~p1; ⌘) and it is a regular point in A.
By the first fact, there exists � > 0 small enough such that B (~q; �) ⇢ B (~p1; ⌘). By
statement (1), we have that ~q is a boundary point of B, in particular, B (~q; �)\B 6= ;
and B (~q; �) \B

c 6= ;. But then

; 6= B (~q; �) \B ⇢ B (~p1; ⌘) \B ⇢ B (~p1; ") \B

and
; 6= B (~q; �) \B

c ⇢ B (~p1; ⌘) \B
c ⇢ B (~p1; ") \B

c
.

In brief, B (~p1; ") \ B 6= ; and B (~p1; ") \ B
c 6= ;. Since this happens for all " > 0,

we conclude that ~p1 is boundary point of B. As usual, we omit the analogous proof
for C; by virtue of which ~p1 2 @C.

Proof of 3. Let us assume that n � 2 and that ~p1 is an isolated point of A. In this
case, by the second fact, there exists � > 0 such that, in B (~p1; �), it holds that ~p1 is
the only point of A. Now, from Lemma 1 it follows, on one hand, that Ac = B [ C

and hence B (~p1; �)� {~p1} ⇢ B [ C; and, on the other hand, B and C are separate,
and since B (~p1; �) � {~p1} is connected in dimension greater or equal than two, it
must happen two cases

B (~p1; �)� {~p1} ⇢ B or B (~p1; �)� {~p1} ⇢ C. (12)

Without loss of generality, let us assume that B (~p1; �) � {~p1} ⇢ B. Whence,
B (~p1; �) \ C = ;; which implies that ~p1 cannot be already a boundary point of C.
Let us prove that, in contrast, ~p1 is a boundary point of B. Let us give " > 0 and
let us define � = min (�, "). Since ~p1 2 B (~p1; �) and ~p1 2 A ⇢ B

c, we have that
~p1 2 B (~p1; �) \B

c; in other words, B (~p1; �) \B
c 6= ;. So,

; 6= B (~p1; �) \B
c ⇢ B (~p1; ✏) \B

c
.
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Hence, B (~p1; ") \ B
c 6= ;. On the other hand, since B (~p1; �) � {~p1} ⇢ B (~p1; �) �

{~p1} ⇢ B, it happens that B (~p1; �) \B 6= ;. By this

; 6= B (~p1; �) \B ⇢ B (~p1; ✏) \B.

That is, B (~p1; ") \ B 6= ;. In brief, B (~p1; ") \ B 6= ; and B (~p1; ") \ B
c 6= ;. Since

this holds for all " > 0, we conclude that ~p1 is a boundary point of B. In conclusion,
~p1 is a boundary point of B but not of C. Analogously, one may prove the case in
(12) for which B (~p1; �) � {~p1} ⇢ C, that ~p1 is a boundary point of C but not of B.
Therefore, ~p1 only may be a boundary point exclusively of one of the subsets B or C.

Finally, notice that the following equivalent statements prove the last biconditional
only for B:

a) ~p1 is a boundary point exclusively of B.

b) There exists � > 0 such that B (~p1; �)� {~p1} ⇢ B.

c) There exists � > 0 such that, if ~p 2 B (~p1; �)� {~p1} , then f (~p) > f (~p1) .

d) f (~p1) is a local minimum.

The equivalence a) , b) follows from the above proof. The equivalences b) , c)
and c) , d) are given by definition of B.

Finally, since f (~p1) is a local maximum or a local minimum, we have thatrf (~p1) =
~0 and that, if ~p 2 B (~p1; �)� {~p1}, then rf (~p) 6= ~0. In other words, ~p1 is an isolated
critical point of f ; whence ~p1 is a doubly isolated critical point of A. This completes
the proof.

3.2.2 The no doubly isolation in level sets as enough condition to be boundaries

Theorem 1 has topological implications which are stated in the following corollaries.

Corollary 1. Assume n � 2 and that the only critical points of f which are in A are
isolated, we have the following facts:

1. Iso (A) = @B 4 @C, where 4 denotes the symmetric di↵erence.

2. A
0
= @B \ @C.

3. A = @B [ @C.

Proof. We prove 2. Notice that from Lemma 1 (5) we have @B [ @C ⇢ A. Since
A is closed, A = A

0 [ Iso(A), which is a disjoint union. From (3) in Theorem 1,
Iso(A) \ @B \ @C = ;, implying that @B \ @C ⇢ A

0. By definition, the points in A
0

satisfy the condition to be in @B \ @C.

We prove 3. From (3) in Theorem 1, Iso(A) = (Iso(A) \ @B) [ (Iso(A) \ @C)
and Iso(A) \ @B \ @C = ;, that is, we have (Iso(A) \ @B) \ (Iso(A) \ @C) =
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;. Therefore, Iso(A) \ @B and Iso(A) \ @C are disjoint, which implies that their
symmetric di↵erence is Iso(A), that is

Iso(A) = (Iso(A) \ @B)4 (Iso(A) \ @C)

= (Iso(A) \ @B) [ (Iso(A) \ @C)

= Iso(A) \ (@B [ @C).

Hence, Iso(A) ⇢ @B [ @C. Noting that A is closed, and using 2, and the fact that
A = A

0 [ Iso(A) we obtain

A = A
0 [ Iso(A)

⇢ (@B \ @C) [ (@B [ @C)

= @B [ @C,

and @B [ @C ⇢ A from Lemma 1 (5). This proves 3.

Finally, we prove 1. Substituting 2 and 3 in Iso(A) = A \A0, it follows that

Iso(A) = (@B [ @C) \ (@B \ @C)

= @B 4 @C

which proves 1.

Corollary 2. If the only critical points of f which are in A are isolated but not
doubly isolated, then B 6= ;, C 6= ; and @B = @C = A.

Proof. By (2) of Theorem 1, we have that the points ofA are simultaneously boundary
points of B and C; that is, A ⇢ @B and A ⇢ @C. Besides, it follows from Lemma 1
that @B ⇢ A and @C ⇢ A. Hence @B = @C = A. Now, since A 6= ;, the previous
facts imply that B 6= ; and C 6= ;.

3.3 The topological closure and regions defined by non strict inequalities

Let n � 2, k 2 R, f : Rn �! R be a di↵erentiable map, with A 6= ;, D = R�k and
E = Rk.

Corollary 2 gives enough conditions on the critical points of f which are in A in
order to permit A to be the common boundary of B and C. Hence, one notes that
the topological closure translates into considering the non strict inequalities instead
of the strict inequalities which define B and C, more precisely,

f�1((k; +1)) = B

= B [ @B

= B [A

= D

= f
�1([k; +1))

and similarly f�1((�1; k)) = C = E = f
�1((�1; k])).
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Now, emerges the question if one may recover the sets B and C by taking the
corresponding interiors of D and E, under the same hypotheses of Corollary 2. The
answer is a�rmative (see Corollary 3); however, we rather prefer to get a more
general result, which includes this particular case, by simplifying the assumptions of
this corollary by taking n � 2. That is what we do in the Theorem 2 as explained in
the introduction, whose proof is given below.

3.3.1 Proof of main Theorem 2

We prove only the case for D, that is we prove (5). Similar reasoning proves (6).

Interior: In order to establish the equality D
� = B [ (Iso (A) \ @B), we have to

prove the inclusions D� ⇢ B [ (Iso (A) \ @B) and B [ (Iso (A) \ @B) ⇢ D
�.

(⇢) Let ~p 2 D
�. Since D

� ⇢ D = B [A, ~p 2 B or ~p 2 A. Assume that ~p 2 A. Since
~p 2 D

�, there exists � > 0 such that B (~p; �) ⇢ D; but D = C
c by (2) of Lemma 1,

and hence ~p is not a boundary point of C. In summary, ~p is a point of A which is not
a boundary point of C. Because n � 2, by (1) of Corollary 1, ~p must be an isolated
point of A which is a boundary point exclusively of B; that is ~p 2 Iso (A) \ @B. In
conclusion, we obtain ~p 2 B [ (Iso (A) \ @B). Since this happens for every ~p 2 D

�,
we conclude that D� ⇢ B [ (Iso (A) \ @B).

(�) Let ~p 2 B [ (Iso (A) \ @B); that is ~p 2 B or ~p 2 Iso (A) \ @B. If ~p 2 B, since
B ⇢ D and B is open, it occurs that B = B

� ⇢ D
�. Hence ~p 2 D

�. Now, if
~p 2 Iso (A) \ @B, this means that ~p 2 A and that there exists � > 0 such that

(B (~p; �)� {~p}) \A = ; and (B (~p; �)� {~p}) \B 6= ;.

Hence, since ~p /2 B, there is �0 > 0 such that B (~p; �0)� {~p} ⇢ B ⇢ D
� and

B (~p; �0) = {~p} [ (B (~p; �0)� {~p}) ⇢ A [D
� ⇢ A [D = D.

In other words, ~p 2 D
�. In conclusion, in any case we obtain that ~p 2 D

�. Since this
happens for every ~p 2 B[ (Iso (A) \ @B), we conclude that B[ (Iso (A) \ @B) ⇢ D

�.

From the two inclusions D� ⇢ B[(Iso (A) \ @B) and B[(Iso (A) \ @B) ⇢ D
�, we

get the equality D
� = B [ (Iso (A) \ @B). Besides, we may substitute Iso (A) \ @B

by Iso (A) � @C applying the equality between them, which is a consequence of (1)
in Corollary 1.

Boundary: Since D is closed, we have that @D = D �D
�. Moreover, from the

above proof, D� = B [ (Iso (A) \ @B). Hence by elementary set properties one has
the following equalities

@D = D � (B [ (Iso (A) \ @B))

= (D �B)� (Iso (A) \ @B) .

Finally, from the last equality and (2) in Lemma 1 it follows that A = D � B and
therefore @D = A� (Iso (A) \ @B) .

Exterior: Since D is closed, we have that Dc is open. Again, from (2) in Lemma
1 we have (A [B)c = C and then

Ext (D) = (Dc)� = D
c = (A [B)c = C.
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This completes the proof of (5).

Corollary 3. Under the assumptions of Corollary 2 it satisfies that B
�
= B and

C
�
= C.

Proof. It follows from Theorem 2.

4. Conclusion

In this paper was proved that under certain conditions on the critical points for a
di↵erentiable function (not necessarily of class C

1) a corresponding level set is the
whole boundary of its complementary associated open sets. The authors believe
that there is at least one direction to continue with this research by considering
complex valued functions in several complex variables, f : Cn �! C, which are real
di↵erentiable but non analytic in the complex sense, in whose case the set of doubly
isolated points must be empty.
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