Análisis estructural y modelamiento molecular de los receptores de odorante Or4 de mosquitos Aedes aegypti

Autores/as

  • Alejandro Soto-Ospina Universidad de Antioquia, Facultad de Medicina, Grupo de Genética Molecular (GenMol), Medellín, Colombia. Corporación Universitaria Lasallista, Facultad de Ingeniería
  • Sebastián Pino Universidad de Antioquia, Facultad de Medicina, Grupo de Genética
  • Gabriel Bedoya
  • Pedronel Araque Universidad EIA, Grupo de Investigación e Innovación en Formulaciones Químicas, Envigado, Colombia
  • Winston Rojas-Montoya Universidad de Antioquia, Facultad de Medicina, Grupo de Genética

DOI:

https://doi.org/10.19136/jobs.a10n27.6328

Palabras clave:

Mosquitos, odorantes, receptor OR4, modelamiento molecular

Resumen

Los receptores de odorantes OR4 acoplados a co-receptores como Orco, son importantes estructuras multiproteicas que permiten la interacción con moléculas de odorante, esenciales en la detección de nutrientes en la dieta de mosquitos Aedes aegypti, para entender como el cambio de haplotipos entre mosquitos salvajes y mosquitos urbanos pueden tener una relación estructural a nivel tridimensional, se hizo el modelado de haplotipos A, B, G (Zoófagos) y C, D, E, F (Antropófagos) que no tienen estructura reportada a partir de un predictor por homología, los posteriores refinamientos por homología fueron realizados para obtener un modelo de reconstrucción por biología estructural ideal para hacer la comparación tridimensional. Los alineamientos de las estructuras tridimensionales se hicieron con el algoritmo Needleman Wunsch y se encontró relación entre los haplotipos zoófagos y antropófagos. Asimismo, los cambios estructurales obtenidos en los haplotipos altamente diferenciados a nivel genético no presentaron una relación tridimensional.

Referencias

Monteiro, F. A., Shama, R., Martins, A. J., Gloria-Soria, A., Brown, J. E. and Powell, J. R. (2014). Genetic Diversity of Brazilian Aedes aegypti: Patterns following an Eradication Program. E. Matovu, ed PLoS Negl Trop Dis 8 e3167. https://doi.org/10.1371/journal.pntd.0003167

Cardé, R. T. (2015). Multi-Cue Integration: How Female Mosquitoes Locate a Human Host. Current Biology 25 R793–5. https://doi.org/10.1016/j.cub.2015.07.057

Dekel, A., Pitts, R. J., Yakir, E. and Bohbot, J. D. (2016). Evolutionarily conserved odorant receptor function questions ecological context of octenol role in mosquitoes. Sci Rep 6 37330. https://doi.org/10.1038/srep37330

Bernier, U. R., Kline, D. L., Schreck, C. E., Yost, R. A. and Barnard, D. R. (2002). Chemical analysis of human skin emanations: comparison of volatiles from humans that differ in attraction of Aedes aegypti (Diptera: Culicidae). J Am Mosq Control Assoc 18 186–95.

Dekker, T., Geier, M. and Cardé, R. T. (2005). Carbon dioxide instantly sensitizes female yellow fever mosquitoes to human skin odours. J Exp Biol 208 2963–72. https://doi.org/10.1242/jeb.01736

Williams, C. R., Bader, C. A., Kearney, M. R., Ritchie, S. A. and Russell, R. C. (2010). The Extinction of Dengue through Natural Vulnerability of Its Vectors. M. J. Turell, ed PLoS Negl Trop Dis 4 e922. https://doi.org/10.1371/journal.pntd.0000922

Suh, E., Bohbot, J. D. and Zwiebel, L. J. (2014). Peripheral olfactory signaling in insects. Curr Opin Insect Sci 6 86–92. https://doi.org/10.1016/j.cois.2014.10.006

Benton, R. (2015). Multigene family evolution: perspectives from insect chemoreceptors. Trends Ecol Evol 30 590–600. https://doi.org/10.1016/j.tree.2015.07.009

McBride, C. S., Baier, F., Omondi, A. B., Spitzer, S. A., Lutomiah, J., Sang, R., Ignell, R. and Vosshall, L. B. (2014). Evolution of mosquito preference for humans linked to an odorant receptor. Nature 515 222–7. https://doi.org/10.1038/nature13964

DeGennaro, M., McBride, C. S., Seeholzer, L., Nakagawa, T., Dennis, E. J., Goldman, C., Jasinskiene, N., James, A. A. and Vosshall, L. B. (2013). orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature 498 487–91. https://doi.org/10.1038/nature12206

Xu, P., Choo, Y.-M., De La Rosa, A. and Leal, W. S. (2014). Mosquito odorant receptor for DEET and methyl jasmonate. Proceedings of the National Academy of Sciences 111 16592–7. https://doi.org/10.1073/PNAS.1417244111

Sato, K., Pellegrino, M., Nakagawa, T., Nakagawa, T., Vosshall, L. B. and Touhara, K. (2008). Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452 1002–6. https://doi.org/10.1038/nature06850

Smart, R., Kiely, A., Beale, M., Vargas, E., Carraher, C., Kralicek, A. V., Christie, D. L., Chen, C., Newcomb, R. D. and Warr, C. G. (2008). Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochem Mol Biol 38 770–80. https://doi.org/10.1016/J.IBMB.2008.05.002

Wicher, D., Schäfer, R., Bauernfeind, R., Stensmyr, M. C., Heller, R., Heinemann, S. H. and Hansson, B. S. (2008). Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452 1007–11. https://doi.org/10.1038/nature06861

Carraher, C., Dalziel, J., Jordan, M. D., Christie, D. L., Newcomb, R. D. and Kralicek, A. V. (2015). Towards an understanding of the structural basis for insect olfaction by odorant receptors. Insect Biochem Mol Biol 66 31–41. https://doi.org/10.1016/J.IBMB.2015.09.010

Sayers, E. W., Cavanaugh, M., Clark, K., Ostell, J., Pruitt, K. D. and Karsch-Mizrachi, I. (2019). GenBank. Nucleic Acids Res 47 D94–9. https://doi.org/10.1093/nar/gky989

Crooks, G., Hon, G., Chandonia, J. and Brenner, S. (2004). NCBI GenBank FTP SitenWebLogo: a sequence logo generator. Genome Res 14 1188–90. https://doi.org/10.1101/gr.849004.1

Berman, H. M., Kleywegt, G. J., Nakamura, H. and Markley, J. L. (2012). The protein data bank at 40: Reflecting on the past to prepare for the future. Structure 20 391–6. https://doi.org/10.1016/j.str.2012.01.010

Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. and Barton, G. J. (2009). Jalview Version 2-A multiple sequence alignment editor and analysis workbench. Bioinformatics 25 1189–91. https://doi.org/10.1093/bioinformatics/btp033

Larkin, M. a, Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. a, McWilliam, H., Valentin, F., Wallace, I. M., Wilm, a, Lopez, R., Thompson, J. D., Gibson, T. J. and Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23 2947–8. https://doi.org/10.1093/bioinformatics/btm404.

Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J. and Zhang, Y. (2015). The I-TASSER Suite: protein structure and function prediction. Nat Methods 12 7–8. https://doi.org/10.1038/nmeth.3213.

Roy, A., Kucukural, A. and Zhang, Y. (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5 725–38. https://doi.org/10.1038/nprot.2010.5.

Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9 40. https://doi.org/10.1186/1471-2105-9-40.

Zhang, J., Liang, Y. and Zhang, Y. (2011). Atomic-level protein structure refinement using fragment-guided molecular dynamics conformation sampling. Structure 19 1784–95. https://doi.org/10.1016/j.str.2011.09.022.

Xu, D. and Zhang, Y. (2011). Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J 101 2525–34. https://doi.org/10.1016/j.bpj.2011.10.024.

Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., De Castro, E., Duvaud, S., Flegel, V., Fortier, A., Gasteiger, E., Grosdidier, A., Hernandez, C., Ioannidis, V., Kuznetsov, D., Liechti, R., Moretti, S., Mostaguir, K., Redaschi, N., Rossier, G., Xenarios, I. and Stockinger, H. (2012). ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40 597–603. https://doi.org/10.1093/nar/gks400.

Benkert, P., Tosatto, S. C. E. and Schomburg, D. (2008). QMEAN: A comprehensive scoring function for model quality assessment. Proteins: Structure, Function, and Bioinformatics 71 261–77. https://doi.org/10.1002/prot.21715

Studer, G., Biasini, M. and Schwede, T. (2014). Assessing the local structural quality of transmembrane protein models using statistical potentials (QMEANBrane). Bioinformatics 30 505–11. https://doi.org/10.1093/bioinformatics/btu457.

Crystallography and Bioinformatics Group. (2017). Rampage: Ramachandran plot.Available at http://mordred.bioc.cam.ac.uk/~rapper/rampage.php.

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. and Ferrin, T. E. (2004). UCSF Chimera - A visualization system for exploratory research and analysis. J Comput Chem 25 1605–12. https://doi.org/10.1002/jcc.20084.

Guex, N. and Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18 2714–23. https://doi.org/10.1002/elps.1150181505

Humphrey, W., Dalke, A. and Schulten, K. (1996). VMD- Visual molecular dynamics. J Mol Graph 14 33–8. https://doi.org/10.1016/0263-7855(96)00018-5.

Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L. and Schulten, K. (2005). Scalable molecular dynamics with NAMD. J Comput Chem 26 1781–802. https://doi.org/10.1002/jcc.20289.

Omasits, U., Ahrens, C. H., Müller, S. and Wollscheid, B. (2014). Protter: Interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30 884–6. https://doi.org/10.1093/bioinformatics/btt607.

Descargas

Publicado

2024-04-30

Número

Sección

Artículo científico

Cómo citar

Soto-Ospina, A., Pino, S., Bedoya, G., Araque, P., & Rojas-Montoya, W. (2024). Análisis estructural y modelamiento molecular de los receptores de odorante Or4 de mosquitos Aedes aegypti. Journal of Basic Sciences, 10(27), 1-17. https://doi.org/10.19136/jobs.a10n27.6328