Regulación de la angiogénesis por antioxidantes en el cáncer de mama triple negativo

Autores/as

  • Evert Guzmán-Méndez Laboratorio de Bioinformática y proteogenómica, División Académica de Ciencias Básicas, UJAT
  • José Arnold González-Garrido Laboratorio de Bioquímica y Biología Molecular, División Académica de Ciencias Básicas UJAT
  • Eduardo de la Cruz Cano División Académica Multidisciplinaria de Comalcalco
  • Carlos Javier López Victorio Laboratorio de Bioinformática y proteogenómica, División Académica de Ciencias Básicas, UJAT

DOI:

https://doi.org/10.19136/jobs.a10n27.6329

Palabras clave:

Cáncer de mama triple negativo, Angiogénesis, Antioxidante, Tratamiento alternativo

Resumen

El cáncer de mama triple negativo (CMTN) está relacionado con un peor pronóstico y un comportamiento más agresivo. Este subtipo cuenta con una mayor frecuencia de metástasis, la cual se ve favorecida por el proceso vascularización relacionado a la angiogénesis tumoral. El objetivo del estudio fue realizar un análisis de expresión diferencial y ontología de genes (GO) en células MDA-MB-468 en respuesta al tratamiento con el antioxidante CAT-SKL, el análisis se realizó utilizando secuencias públicas contenidas en la base de datos Gene Expression Omnibus (GEO). La angiogénesis fue una de las ontologías que resultó subexpresada (DR) por el tratamiento con CAT-SKL. Los genes proangiogénicos KDR, EGR3, CCN2, S100A7, PDGFRA y FN1 se observaron disminuidos, mientras que el gen antiangiogénico IL18 se mantuvo incrementado. Adicionalmente encontramos que ontologías relacionadas con el transporte de aminoácidos se presentan sobreexpresadas (UR).

Referencias

Lugones, M., & Ramírez, M., “Aspectos históricos y culturales sobre el cáncer de mama”, Revista Cubana de Medicina General Integral, Vol. 25, No.3, 2009, 160–166.

Satherley, L., & Lloyd, E., “Breast cancer”, Medicine, 51, 1, 2023, 42–47.

Siegel, R.L., Miller, L.D., Jemal, A., “Cancer statistics”, CA: A Cancer Journal for Clinicians, 66, 1, 2016, 7–30.

Arceo, M.T., López, J.E., Ochoa, A., & Palomera, Z., “Estado actual del cáncer de mama en México: principales tipos y factores de riesgo”, Gaceta Mexicana de Oncología, 20, 3, 2021, 101–110.

Sun, Y.S., Zhao, Z., Yang, Z.N., Xu, F., Lu, H.J., Zhu, Z.Y., et al., “Risk factors and preventions of breast cancer”, International Journal of Biological Sciences, 13, 2017, 1387–1397.

Arroyo, M., Martín, M., & Álvarez-Mon, M., “Cáncer de mama”, Medicine, 12, 34, 2017, 2011–2023.

Tsang, J.Y.S., & Tse, G.M., “Molecular Classification of Breast Cancer”, Advances in Anatomic Pathology, 27, 1, 2020, 27–35.

Łukasiewicz, S., Czeczelewski, M., Forma, A., Baj, J., Sitarz, R., & Stanisławek, A., “Breast Cancer—Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies— An Updated Review”, Cancers (Basel), 13, 4287, 2021, 1–30.

Irvin, W.J., & Carey, L.A., “What is triple-negative breast cancer?”, European Journal of Cancer, 44, 18, 2008, 2799–2805.

Orban, M.S., Ulloa, A.L., Arias, C.P., Gon, C., Sanchotena, V., Carrasco, M., Horton, G., et al., “Cáncer de mama Triple Negativo: evaluación de características clínico-patológicas y factores pronósticos”, Revista Argentina de Mastologia, 36, 130, 2017, 73–86.

Elias, A.D., “Triple-negative breast cancer: A short review”, American Journal of Clinical Oncology: Cancer Clinical Trials, 33, 6, 2010, 637–645.

Zaharia, M., & Gómez, H., “Cáncer de Mama Triple Negativo: Una enfermedad de difícil diagnóstico y tratamiento”, Revista Peruana de Medicina Experimental y Salud Pública, 30, 4, 2013, 649–656.

Lopes, C.M., Montemor, M.R., Mansani, F.P, Stival, R.S.M., Cassapula, M.R., & Oliveira, T.F.B., “Clinical, histomorphological, and therapeutic prognostic factors in patients with triple-negative invasive breast cancer”, Jornal Brasileiro de Patologia e Medicina Laboratorial, 51, 6, 2015, 397–406.

Guerra, A., Silva, E., Montero, S., Rodríguez, D., Mansilla, R., & Nieto, J., “Metástasis: un hito para el conocimiento, un reto para la ciencia”, Revista Cubana de Medicina, 59, 1, 2020, e1167.

Aslan, C., Maralbashi, S., Salari, F., Kahroba, H., Sigaroodi, F., Kazemi, T., et al., “Tumor‐derived exosomes: Implication in angiogenesis and antiangiogenesis cancer therapy”, Journal of Cellular Physiology, 234, 10, 2019, 16885–16903.

Aslan, C., Maralbashi, S., Kahroba, H., Asadi, M., Soltani, M.S., Javadian, M., et al., “Docosahexaenoic acid (DHA) inhibits pro-angiogenic effects of breast cancer cells via down-regulating cellular and exosomal expression of angiogenic genes and microRNAs”, Life Sciences, 258, 2020, 118094.

Shashni, B., Nishikawa, Y., & Nagasaki, Y., “Management of tumor growth and angiogenesis in triple-negative breast cancer by using redox nanoparticles”, Biomaterials, 269, 2021, 120645.

Madu, C.O., Wang, S., Madu, C.O., & Lu, Y., “Angiogenesis in Breast Cancer Progression, Diagnosis, and Treatment”, Journal of Cancer, 11, 15, 2020, 4474–4494.

Liang, H., Xiao, J., Zhou, Z., Wu, J., Ge, F., Li, Z., et al., “Hypoxia induces miR-153 through the IRE1α-XBP1 pathway to fine tune the HIF1α/VEGFA axis in breast cancer angiogenesis”, Oncogene, 37, 15, 2018, 1961–1975.

Rana, N.K., Singh, P., & Koch, B., “CoCl2 simulated hypoxia induce cell proliferation and alter the expression pattern of hypoxia associated genes involved in angiogenesis and apoptosis”, Biological Research, 52, 1, 2019, 12.

López, O., Magariño, Y., & Delgado, R., “The angiogenic process and cancer”, Biotecnología Aplicada, 26, 2, 2009, 111–116.

Vasudev, N.S., & Reynolds, A.R., “Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions”, Angiogenesis, 17, 3, 2014, 471–494.

Smolarz, B., Zadro, A., & Romanowicz, H., “Breast Cancer-Epidemiology, Classification, Pathogenesis and Treatment (Review of Literature)”, Cancers (Basel), 14, 10, 2022, 1–27.

Olejarz, W., Kubiak, G., Chrzanowska, A., & Lorenc, T., “Exosomes in Angiogenesis and Anti-angiogenic Therapy in Cancers”, International Journal of Molecular Sciences, 21, 16, 2020, 5840.

Ribatti, D., “Endogenous inhibitors of angiogenesis”, Leukemia Research, 33, 5, 2009, 638–644.

Wahba, H.A., & El-Hadaad, H.A., “Current approaches in treatment of triple-negative breast cancer”, Cancer Biology & Medicine, 12, 2, 2015, 106–116.

Kumar, P., & Aggarwal, R., “An overview of triple-negative breast cancer”, Archives of Gynecology and Obstetrics, 293, 2, 2016, 247–69.

Catalano, A., Iacopetta, D., Ceramella, J., Mariconda, A., Rosano, C., Scumaci, D., et al., “New Achievements for the Treatment of Triple-Negative Breast Cancer”, Applied Sciences, 12, 11, 2022, 5554.

Yang, Z., Zhang, Q., Yu, L., Zhu, J., Cao, Y., & Gao, X., “The signaling pathways and targets of traditional Chinese medicine and natural medicine in triple-negative breast cancer”, Journal of Ethnopharmacology, 264, 2021, 113249.

Griñan, C., Blaya, J.L., López, A., Ávalos, M., Navarro, A., Cara, F.E., et al., “Antioxidants for the treatment of breast cancer: Are we there yet?”, Antioxidants, 10, 2, 2021, 1–44.

Szatrowski, T., & Nathan, C., “Production of large amounts of hydrogen peroxide by human tumor cells”, Cancer Research, 51, 3, 1991, 794–798.

Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., et al., “Oxidative Stress: Harms and Benefits for Human Health”, Oxidative Medicine and Cellular Longevity, 2017, 2017, 1–13.

Liou, G.Y., & Storz, P., “Reactive oxygen species in cancer”, Free Radical Research, 44, 5, 2010, 479–496.

Nell, H.J., Au, J.L., Giordano, C.R., Terlecky, S.R., Walton, P.A., Whitehead, S.N., et al., “Targeted Antioxidant, Catalase-SKL, Reduces Beta-Amyloid Toxicity in the Rat Brain”, Brain Pathology, 27, 1, 2017, 86–94.

Hayes, S.H., Liu, Q., Selvakumaran, S., Haney, M.J., Batrakova, E.V., Allman, B.L., et al., “Brain Targeting and Toxicological Assessment of the Extracellular Vesicle-Packaged Antioxidant Catalase-SKL Following Intranasal Administration in Mice”, Neurotoxicity Research, 39, 5, 2021, 1418–1429.

Giordano, C.R., Terlecky, L.J., Bollig, A., Walton, P.A., & Terlecky, S.R., “Amyloid-beta neuroprotection mediated by a targeted antioxidant”, Scientific Reports, 4, 1, 2014, 4983.

MacKenzie, J.L., Ivanova, N., Nell, H.J., Giordano, C.R., Terlecky, S.R., Agca, C., et al., “Microglial Inflammation and Cognitive Dysfunction in Comorbid Rat Models of Striatal Ischemic Stroke and Alzheimer’s Disease: Effects of Antioxidant Catalase-SKL on Behavioral and Cellular Pathology”, Neuroscience, 487, 2022, 47–65.

Giordano, C.R., Roberts, R., Krentz, K.A., Bissig, D., Talreja, D., Kumar, A., et al., “Catalase Therapy Corrects Oxidative Stress-Induced Pathophysiology in Incipient Diabetic Retinopathy”, Investigative Opthalmology & Visual Science, 56, 5, 2015, 3095.

Giordano, C.R., Mueller, K.L., Terlecky, L.J., Krentz, K.A., Bollig, A., Terlecky, S.R., et al., “A targeted enzyme approach to sensitization of tyrosine kinase inhibitor-resistant breast cancer cells”, Experimental Cell Research, 318, 16, 2012, 2014–2021.

Bao, B., Mitrea, C., Wijesinghe, P., Marchetti, L., Girsch, E., Farr, R.L., et al., “Treating triple negative breast cancer cells with erlotinib plus a select antioxidant overcomes drug resistance by targeting cancer cell heterogeneity”, Scientific Reports, 7, 1, 2017, 44125.

Mitrea, C., Wijesinghe, P., Dyson, G., Kruger, A., Ruden, D.M., Drghici, S., et al., “Integrating 5hmC and gene expression data to infer regulatory mechanisms”, Bioinformatics, 34, 9, 2018, 1441–1447.

Andrews S., https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, 2010, FASTQC, “A quality control tool for high throughput sequence data”.

Kim, D., Langmead, B., & Salzberg, S.L., “HISAT: a fast spliced aligner with low memory requirements”, Nature Methods, 12, 4, 2015, 357–360.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al., “The Sequence Alignment/Map format and SAMtools”, Bioinformatics, 25, 16, 2009, 2078–2079.

Liao, Y., Smyth, G.K., & Shi, W., “featureCounts: an efficient general purpose program for assigning sequence reads to genomic features”, Bioinformatics, 30, 7, 2014, 923–930.

Robinson, M.D., McCarthy, D.J., & Smyth, G.K., “edgeR: a Bioconductor package for differential expression analysis of digital gene expression data”, Bioinformatics, 26, 1, 2010, 139–140.

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., et al., “limma powers differential expression analyses for RNA-sequencing and microarray studie”, Nucleic Acids Research, 43, 7, 2015, e47–e47.

Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., et al., “g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update)”, Nucleic Acids Research, 47, W1, 2019, W191–W198.

The Gene Ontology C., “The Gene Ontology Resource: 20 years and still GOing strong”, Nucleic Acids Research, 47, D1, 2019, D330–D338.

Androutsopoulos, V.P., Tsatsakis, A.M., Spandidos, D.A., “Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention” BMC Cancer, 9, 1, 2009, 187.

Stading, R., Chu, C., Couroucli, X., Lingappan, K., & Moorthy, B., “Molecular role of cytochrome P4501A enzymes in oxidative stress”, Current Opinion in Toxicology, 20–21, 2020, 77–84.

Li, S., Lu, Z., Sun, R., Guo, S., Gao, F., Cao, B., et al., “The Role of SLC7A11 in Cancer: Friend or Foe?”, Cancers (Basel), 14, 13, 2022, 3059.

Granitzer, S., Widhalm, R., Forsthuber, M., Ellinger, I., Desoye, G., Hengstschläger, M., et al., “Amino Acid Transporter LAT1 (SLC7A5) Mediates MeHg-Induced Oxidative Stress Defense in the Human Placental Cell Line HTR-8/SVneo”, International Journal of Molecular Sciences, 22, 4, 2021, 1707.

de la Ballina, L.R., Cano, S., González, E., Bial, S., Estrach, S., Cailleteau, L., et al., “Amino Acid Transport Associated to Cluster of Differentiation 98 Heavy Chain (CD98hc) Is at the Cross-road of Oxidative Stress and Amino Acid Availability”, Journal of Biological Chemistry, 291, 18, 2016, 9700–9711.

Fukai, T., & Ushio, M., “Cross-Talk between NADPH Oxidase and Mitochondria: Role in ROS Signaling and Angiogenesis”, Cells, 9, 8, 2020, 1849.

Brown, N.S., & Bicknell, R., “Hypoxia and oxidative stress in breast cancer Oxidative stress - its effects on the growth, metastatic potential and response to therapy of breast cancer”, Breast Cancer Research, 3, 5, 2001, 323.

Ushio, M., & Nakamura, Y., “Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy”, Cancer Letters, 266, 1, 2008, 37–52.

Stewart, M., Turley, H., Cook, N., Pezzella, F., Pillai, G., Ogilvie, D., et al., “The angiogenic receptor KDR is widely distributed in human tissues and tumours and relocates intracellularly on phosphorylation”, An immunohistochemical study, Histopathology, 43, 1, 2003, 33–39.

Liu, D., Evans, I., Britton, G., & Zachary, I., “The zinc-finger transcription factor, early growth response 3, mediates VEGF-induced angiogenesis”, Oncogene, 27, 21, 2008, 2989–2998.

Shimo, T., Nakanishi, T., Nishida, T., Asano, M., Kanyama, M., Kuboki, T., et al., “Connective Tissue Growth Factor Induces the Proliferation, Migration, and Tube Formation of Vascular Endothelial Cells In Vitro, and Angiogenesis In Vivo”, The Journal of Biochemistry, 126, 1, 1999, 137–145.

Vegfors, J., Ekman, A.K., Stoll, S.W., Bivik, C, & Enerbäck, C., “Psoriasin (S100A7) promotes stress-induced angiogenesis”, British Journal of Dermatology, 175, 6, 2016, 1263–1273.

Zhang, J., Cao, R., Zhang, Y., Jia, T., Cao, Y., & Wahlberg, E., “Differential roles of PDGFR‐α and PDGFR‐β in angiogenesis and vessel stability”, The FASEB Journal, 23, 1, 2009, 153–163.

Xu, X., Shen, L., Li, W., Liu, X., Yang, P., & Cai, J., “ITGA5 promotes tumor angiogenesis in cervical cancer”, Cancer Medicine, 12, 10, 2023, 11983–11999.

Cao, R., Farnebo, J., Kurimoto, M., & Cao, Y., “Interleukin‐18 acts as an angiogenesis and tumor suppressor”, The FASEB Journal, 13, 15, 1999, 2195–2202.

Modi, S.J., & Kulkarni, V.M., “Vascular Endothelial Growth Factor Receptor (VEGFR-2)/KDR Inhibitors: Medicinal Chemistry Perspective”, Medicine in Drug Discovery, 2, 2019, 100009.

Zhang, X., Ge, Y.L., Zhang, S.P., Yan, P., & Tian, R.H., “Downregulation of KDR expression induces apoptosis in breast cancer cells”, Cellular & Molecular Biology Letters, 19, 4, 2014, 527–541.

Suzuki, T., Inoue, A., Miki, Y., Moriya, T., Akahira, J., Ishida, T., et al., “Early growth responsive gene 3 in human breast carcinoma: a regulator of estrogen-meditated invasion and a potent prognostic factor”, Endocrine-Related Cancer, 14, 2, 2007, 279–292.

Shen, Y.W., Zhou, Y.D., Chen, H.Z., Luan, X., & Zhang, W.D., “Targeting CTGF in Cancer: An Emerging Therapeutic Opportunity”, Trends in Cancer, 7, 6, 2021, 511–524.

Kim, H., & Son, S., “Therapeutic potential of connective tissue growth factor (CTGF) in triple-negative breast cancer”, Annals of Oncology, 30, 2019, i8.

Zhou, Y., Yu, Y., Yang, H., Yang, H., Huo, Y., Huang, Y., et al., “Extracellular ATP promotes angiogenesis and adhesion of TNBC cells to endothelial cells via upregulation of CTGF”, Cancer Science, 113, 7, 2022, 2457–2471.

Nasser, M.W., Wani, N.A., Ahirwar, D.K., Powell, C.A., Ravi, J., Elbaz, M., et al., “RAGE Mediates S100A7-Induced Breast Cancer Growth and Metastasis by Modulating the Tumor Microenvironment”, Cancer Research, 75, 6, 2015, 974–985.

Joglekar, M., Van Laere, S., Bourne, M., Moalwi, M., Finetti, P., Vermeulen, P.B., et al., “Characterization and Targeting of Platelet-Derived Growth Factor Receptor alpha (PDGFRA) in Inflammatory Breast Cancer (IBC)”, Neoplasia, 19, 7, 2017, 564–573.

Jansson, S., Bendahl, P.O., Grabau, D.A., Falck, A.K., Fernö, M., Aaltonen, K., et al., “The Three Receptor Tyrosine Kinases c-KIT, VEGFR2 and PDGFRα, Closely Spaced at 4q12, Show Increased Protein Expression in Triple-Negative Breast Cancer”, PLoS One, 9, 7, 2014, e102176.

Jansson, S., Aaltonen, K., Bendahl, P.O., Falck, A.K., Karlsson, M., Pietras, K., et al., “The PDGF pathway in breast cancer is linked to tumour aggressiveness, triple-negative subtype and early recurrence”, Breast Cancer Research and Treatment, 169, 2018, 231–241.

Sun, Y., Zhao, C., Ye, Y., Wang, Z., He, Y., Li, Y., et al., “High expression of fibronectin 1 indicates poor prognosis in gastric cancer”, Oncology Letters, 19, 1, 2019, 93–102.

Zhang, X.X., Luo, J.H., & Wu, L.Q., “FN1 overexpression is correlated with unfavorable prognosis and immune infiltrates in breast cancer”, Frontiers in Genetics, 13, 2022, 913659.

Suman, S., Basak, T., Gupta, P., Mishra, S., Kumar, V., Sengupta, S., et al., “Quantitative proteomics revealed novel proteins associated with molecular subtypes of breast cancer”, Journal of Proteomics, 148, 2016, 183–193.

Yaqoob, U., Jagavelu, K., Shergill, U., de Assuncao, T., Cao, S., & Shah, V.H., “FGF21 Promotes Endothelial Cell Angiogenesis through a Dynamin-2 and Rab5 Dependent Pathway”, PLoS One, 9, 5, 2014, e98130.

Segarra, M., Ohnuki, H., Maric, D., Salvucci, O., Hou, X., Kumar, A., et al., “Semaphorin 6A regulates angiogenesis by modulating VEGF signaling”, Blood, 120, 19, 2012, 4104–4115.

Cai, Y.C., Yang, H., Wang, K.F., Chen, T.H., Jiang, W.Q., & Shi, Y.X., “ANGPTL4 overexpression inhibits tumor cell adhesion and migration and predicts favorable prognosis of triple-negative breast cancer”, BMC Cancer, 20, 2020, 878.

Descargas

Publicado

2024-04-30

Número

Sección

Artículo científico

Cómo citar

Guzmán-Méndez, E., González-Garrido, J. A., de la Cruz Cano, E., & López Victorio, C. J. (2024). Regulación de la angiogénesis por antioxidantes en el cáncer de mama triple negativo. Journal of Basic Sciences, 10(27), 18-34. https://doi.org/10.19136/jobs.a10n27.6329