Pectin Extracted from Orange Peel (Citrus Sinensis) to Obtain Bioplastic: Synergistic Effects with Alginate

Autores/as

  • Hernández-Madrigal F Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Básicas
  • Saavedra-Díaz R.O Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Básicas
  • Hernández-Córdova R Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Básicas

DOI:

https://doi.org/10.19136/jobs.a10n28.6363

Palabras clave:

Bioplastic film, Pectin TGA, Methoxy titration

Resumen

Pectin, derived from agri-food industry waste, is an almost inexhaustible resource. This study aims to develop a bioplastic from pectin extracted from orange peel, combined with commercial alginate, and to investigate its physicochemical and thermal properties. Pectin was extracted using acid hydrolysis, and its degree of esterification and methoxyl content were determined through titration. The bioplastic film was obtained by ionic cross-linking method. Structural characterization was conducted with Fourier Transform Infrared (FTIR) spectroscopy, while the thermal properties of the pectin and the film were assessed via thermogravimetric analysis (TGA). The results indicated that pectin and alginate exhibited synergistic interactions through miscibility and ionic cross-linking. The bioplastic film demonstrated thermal stability, with a plateau in the range of 130 – 200 °C, indicating that the material possesses suitable properties for thermal processing.

Referencias

I. S. Sidek, S. F. S. Draman, S. R. S. Abdullah, and N. Anuar, “Current Development on Bioplastics and Its Future Prospects: an Introductory Review,” INWASCON Technology Magazine, vol. 1, pp. 03–08, 2019, doi: 10.26480/itechmag.01.2019.03.08.

G. Bhagwat et al., “Benchmarking Bioplastics: A Natural Step Towards a Sustainable Future,” Journal Polymer Environ, vol. 28, no. 12, pp. 3055–3075, 2020, doi: 10.1007/s10924-020-01830-8.

C. Mellinas, M. Ramos, A. Jiménez, and M. C. Garrigós, “Recent trends in the use of pectin from agrowaste residues as a natural based biopolymer for food packaging applications,” Materials, vol. 13, no. 3, 2020, doi: 10.3390/ma13030673.

Li, D. Q., Li, J., Dong, H. L., Li, X., Zhang, J. Q., Ramaswamy, S., and Xu, F. “Pectin in biomedical and drug delivery applications: A review,” International Journal of Biological Macromolecules, vol. 185, no. March, pp. 49–65, 2021, doi: 10.1016/j.ijbiomac.2021.06.088.

C. Wang, W. Y. Qiu, T. T. Chen, and J. K. Yan, “Effects of structural and conformational characteristics of citrus pectin on its functional properties,” Food Chem, vol. 339, no. September 2020, p. 128064, 2021, doi: 10.1016/j.foodchem.2020.128064.

Makaremi, M., Yousefi, H., Cavallaro, G., Lazzara, G., Goh, C. B. S., Lee, S. M., ... and Pasbakhsh, P. Safely dissolvable and healable active packaging films based on alginate and pectin. Polymers (Basel), vol. 11, no. 10, pp. 1–18, 2019, doi: 10.3390/polym11101594.

S. S. N. Chakravartula, M. Soccio, N. Lotti, F. Balestra, M. Dalla Rosa, and V. Siracusa, “Characterization of composite edible films based on pectin/alginate/whey protein concentrate,” Materials, vol. 12, no. 15, pp. 1–19, 2019, doi: 10.3390/ma12152454.

M. M. Saldívar Guevara, V. Saucedo-Rivalcoba, J. L. Rivera-Armenta, and L. I. Elvira-Torales, “Evaluation of a Cross-Linking Agent in the Preparation of Films Based on Chitosan and Pectin for Food Packaging Applications,” Cellulose Chemistry and Technology, vol. 56, no. 9–10, pp. 1061–1070, 2022, doi: 10.35812/CelluloseChemTechnol.2022.56.94.

A. Kumar Tiwari, S. Nath Saha, V. Prasad Yadav, U. Kumar Upadhyay, D. Katiyar, and T. Mishra, “Extraction and Characterization of Pectin from Orange Peels,” International Journal of Biotechnology and Biochemistry, vol. 13, no. 1, pp. 39–47, 2017, [Online]. Available: http://www.ripublication.com

Deng, L. Z., Pan, Z., Zhang, Q., Liu, Z. L., Zhang, Y., Meng, J. S., ... and Xiao, H. W. “Effects of ripening stage on physicochemical properties, drying kinetics, pectin polysaccharides contents and nanostructure of apricots,” Carbohydr Polym, vol. 222, no. February, p. 114980, 2019, doi: 10.1016/j.carbpol.2019.114980.

Frempong, K. E. B., Chen, Y., Wang, Z., Xu, J., Xu, X., Cui, W., ... and Lin, X. “Study on textural changes and pectin degradation of tarocco blood Orange during storage,” International Journal Food Properties, vol. 25, no. 1, pp. 344–358, 2022, doi: 10.1080/10942912.2022.2032736.

E. E. Santos, R. C. Amaro, C. C. C. Bustamante, M. H. A. Guerra, L. C. Soares, and R. E. S. Froes, “Extraction of pectin from agroindustrial residue with an ecofriendly solvent: use of FTIR and chemometrics to differentiate pectins according to degree of methyl esterification,” Food Hydrocoll, vol. 107, no. December 2019, 2020, doi: 10.1016/j.foodhyd.2020.105921.

M. A. Patel, M. H. H. AbouGhaly, J. V. Schryer-Praga, and K. Chadwick, “The effect of ionotropic gelation residence time on alginate cross-linking and properties,” Carbohydr Polym, vol. 155, pp. 362–371, 2017, doi: 10.1016/j.carbpol.2016.08.095.

Amante, C., Andretto, V., Rosso, A., Augusti, G., Marzocco, S., Lollo, G., and Del Gaudio, P. “Alginate-pectin microparticles loaded with nanoemulsions as nanocomposites for wound healing,” Drug Deliv Transl Res, vol. 13, no. 5, pp. 1343–1357, 2023, doi: 10.1007/s13346-022-01257-9.

Descargas

Publicado

2024-08-30

Número

Sección

Artículo científico

Cómo citar

Hernández Madrigal, F., Saavedra Díaz, R. O. ., & Hernández Córdova, R. (2024). Pectin Extracted from Orange Peel (Citrus Sinensis) to Obtain Bioplastic: Synergistic Effects with Alginate. Journal of Basic Sciences, 10(28), 1-9. https://doi.org/10.19136/jobs.a10n28.6363