Analysis of the effectiveness and risk benefit of N acetyl cysteine compared to ceftriaxone in the expression of GLT1 transporters.

Autores/as

  • Crystell Guadalupe Guzmán-Priego Universidad Juárez Autónoma de Tabasco http://orcid.org/0000-0002-8228-1314
  • Hafiz Benitez Arias Universidad Juárez Autónoma de Tabasco
  • Jesus Maximilano Granados Villalpando Universidad Juarez Autonoma de Tabasco
  • Liliana Totosau Betancourt Universidad Juárez Autónoma de Tabasco

DOI:

https://doi.org/10.19136/mh5ganthff096cd

Palabras clave:

Ceftriaxone, GLT-1, N-Acetylcysteine, Expression

Resumen

The concentration of glutamate in the synaptic cleft is regulated primarily by glutamate transporters, especially by the glial glutamate-specific transporter type 1 (GLT-1). Ceftriaxone (CTX), a β-lactam antibiotic, has been reported to significantly increase GLT-1 expression. N-acetylcysteine ​​as a derivative of cysteine, is oxidized into cystine within the brain, increasing the availability of cystine for the glial cystine-glutamate exchanger, this action increases the amount of glutamate exchanged by glial cells, raising the concentration of glutamate within the extra-synaptic space and effectively promoting GLT-1 transcription. It is suspected that the β-lactam antibiotic ceftriaxone is more effective than N-acetylcysteine ​​in upregulating GLT-1 expression. We conducted a systematic review to investigate the effectiveness of the drugs N-acetylcysteine ​​and ceftriaxone with respect to their effect on increasing the expression of GLT-1 transporters in experimental studies. This systematic review was carried out with methodology in accordance with the Cochrane Handbook and reporting consistent with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The main objective of this work is to determine the difference in effectiveness of N-acetylcysteine compared to Ceftriaxone in the expression of the GLT-1 transporter. A clear superiority is shown by ceftriaxone, because by itself it can induce an increase in the levels of these proteins either in circumstances where the glutamatergic flux is affected or in control groups, in contrast to N-acetylcysteine. which improves the expression of these transporters only when there is a deficit in the levels of GLT-1.

Biografía del autor/a

  • Crystell Guadalupe Guzmán-Priego, Universidad Juárez Autónoma de Tabasco

    Medico Cirujano. Maestra en Ciencias Básicas Biomedicas, Doctora en Educación, Miembro del Sistema Nacional Nivel 1 (CONACYT) Profesora Investigadora de la División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco

Referencias

Duailibi, M. S., Cordeiro, Q., Brietzke, E., Ribeiro, M., LaRowe, S., Berk, M., & Trevizol, A. P. (2017). N-acetylcysteine in the treatment of craving in substance use disorders: Systematic review and meta-analysis. The American Journal on Addictions, 26(7), 660–666. https://doi.org/10.1111/AJAD.12620

Fan, S., Xian, X., Li, L., Yao, X., Hu, Y., Zhang, M., & Li, W. (2018). Ceftriaxone Improves Cognitive Function and Upregulates GLT-1-Related Glutamate-Glutamine Cycle in APP/PS1 Mice. Journal of Alzheimer’s Disease, 66(4), 1731–1743. https://doi.org/10.3233/JAD-180708

Gao, J., Liu, L., Liu, C., Fan, S., Liu, L., Liu, S., Xian, X.-H., & Li, W.-B. (2020a). GLT-1 Knockdown Inhibits Ceftriaxone-Mediated Improvements on Cognitive Deficits, and GLT-1 and xCT Expression and Activity in APP/PS1 AD Mice. Frontiers in Aging Neuroscience, 0, 318. https://doi.org/10.3389/FNAGI.2020.580772

Gao, J., Liu, L., Liu, C., Fan, S., Liu, L., Liu, S., Xian, X.-H., & Li, W.-B. (2020b). GLT-1 Knockdown Inhibits Ceftriaxone-Mediated Improvements on Cognitive Deficits, and GLT-1 and xCT Expression and Activity in APP/PS1 AD Mice. Frontiers in Aging Neuroscience, 12. https://doi.org/10.3389/FNAGI.2020.580772

Hajhashemi, V., Hosseinzadeh, H., & Amin, B. (2013). Antiallodynia and antihyperalgesia effects of ceftriaxone in treatment of chronic neuropathic pain in rats. Acta Neuropsychiatrica, 25(1), 27–32. https://doi.org/10.1111/J.1601-5215.2012.00656.X

Israel, Y., Quintanilla, M. E., Ezquer, F., Morales, P., Santapau, D., Berríos-Cárcamo, P., Ezquer, M., Olivares, B., & Herrera-Marschitz, M. (2019). Aspirin and N-acetylcysteine co-administration markedly inhibit chronic ethanol intake and block relapse binge drinking: Role of neuroinflammation-oxidative stress self-perpetuation. Addiction Biology, 26(1). https://doi.org/10.1111/ADB.12853

Israel, Y., Quintanilla, M. E., Ezquer, F., Morales, P., Santapau, D., Berríos-Cárcamo, P., Ezquer, M., Olivares, B., & Herrera-Marschitz, M. (2021). Aspirin and N-acetylcysteine co-administration markedly inhibit chronic ethanol intake and block relapse binge drinking: Role of neuroinflammation-oxidative stress self-perpetuation. Addiction Biology, 26(1). https://doi.org/10.1111/ADB.12853

Knackstedt, L. A., Melendez, R. I., & Kalivas, P. W. (2010a). Ceftriaxone Restores Glutamate Homeostasis and Prevents Relapse to Cocaine Seeking. Biological Psychiatry, 67(1), 81–84. https://doi.org/10.1016/J.BIOPSYCH.2009.07.018

Knackstedt, L. A., Melendez, R. I., & Kalivas, P. W. (2010b). Ceftriaxone Restores Glutamate Homeostasis and Prevents Relapse to Cocaine Seeking. Biological Psychiatry, 67(1), 81–84. https://doi.org/10.1016/J.BIOPSYCH.2009.07.018

Krzyzanowska, W., Pomierny, B., Budziszewska, B., Filip, M., & Pera, J. (2016a). N-Acetylcysteine and Ceftriaxone as Preconditioning Strategies in Focal Brain Ischemia: Influence on Glutamate Transporters Expression. Neurotoxicity Research 2016 29:4, 29(4), 539–550. https://doi.org/10.1007/S12640-016-9602-Z

Krzyzanowska, W., Pomierny, B., Budziszewska, B., Filip, M., & Pera, J. (2016b). N-Acetylcysteine and Ceftriaxone as Preconditioning Strategies in Focal Brain Ischemia: Influence on Glutamate Transporters Expression. Neurotoxicity Research, 29(4), 539. https://doi.org/10.1007/S12640-016-9602-Z

Krzyżanowska, W., Pomierny, B., Bystrowska, B., Pomierny-Chamioło, L., Filip, M., Budziszewska, B., & Pera, J. (2017a). Ceftriaxone- and N-acetylcysteine-induced brain tolerance to ischemia: Influence on glutamate levels in focal cerebral ischemia. PLOS ONE, 12(10), e0186243. https://doi.org/10.1371/JOURNAL.PONE.0186243

Krzyżanowska, W., Pomierny, B., Bystrowska, B., Pomierny-Chamioło, L., Filip, M., Budziszewska, B., & Pera, J. (2017b). Ceftriaxone- and N-acetylcysteine-induced brain tolerance to ischemia: Influence on glutamate levels in focal cerebral ischemia. PLOS ONE, 12(10), e0186243. https://doi.org/10.1371/JOURNAL.PONE.0186243

Lebourgeois, S., González-Marín, M. C., Antol, J., Naassila, M., & Vilpoux, C. (2019). Evaluation of N-acetylcysteine on ethanol self-administration in ethanol-dependent rats. Neuropharmacology, 150, 112–120. https://doi.org/10.1016/J.NEUROPHARM.2019.03.010

Lee, S.-G., Su, Z.-Z., Emdad, L., Gupta, P., Sarkar, D., Borjabad, A., Volsky, D. J., & Fisher, P. B. (2008). Mechanism of Ceftriaxone Induction of Excitatory Amino Acid Transporter-2 Expression and Glutamate Uptake in Primary Human Astrocytes. The Journal of Biological Chemistry, 283(19), 13116. https://doi.org/10.1074/JBC.M707697200

Logan, C. N., Bechard, A. R., Hamor, P. U., Wu, L., Schwendt, M., & Knackstedt, L. A. (2020). Ceftriaxone and mGlu2/3 interactions in the nucleus accumbens core affect the reinstatement of cocaine-seeking in male and female rats. Psychopharmacology 2020 237:7, 237(7), 2007–2018. https://doi.org/10.1007/S00213-020-05514-Y

Luo, X., He, T., Wang, Y., Wang, J.-L., Yan, X.-B., Zhou, H.-C., Wang, R.-R., Du, R., Wang, X.-L., Chen, J., & Huang, D. (2020a). Ceftriaxone Relieves Trigeminal Neuropathic Pain Through Suppression of Spatiotemporal Synaptic Plasticity via Restoration of Glutamate Transporter 1 in the Medullary Dorsal Horn. Frontiers in Cellular Neuroscience, 0, 199. https://doi.org/10.3389/FNCEL.2020.00199

Luo, X., He, T., Wang, Y., Wang, J.-L., Yan, X.-B., Zhou, H.-C., Wang, R.-R., Du, R., Wang, X.-L., Chen, J., & Huang, D. (2020b). Ceftriaxone Relieves Trigeminal Neuropathic Pain Through Suppression of Spatiotemporal Synaptic Plasticity via Restoration of Glutamate Transporter 1 in the Medullary Dorsal Horn. Frontiers in Cellular Neuroscience, 14. https://doi.org/10.3389/FNCEL.2020.00199

MA, N. E., T, A. R., G, R. C., V, S. S., DX, da S., & TM, F. (2017). N-acetylcysteine for treating cocaine addiction - A systematic review. Psychiatry Research, 251, 197–203. https://doi.org/10.1016/J.PSYCHRES.2017.02.024

Matos-Ocasio, F., Hernández-López, A., & Thompson, K. J. (2014). Ceftriaxone, a GLT-1 transporter activator, disrupts hippocampal learning in rats. Pharmacology Biochemistry and Behavior, 122, 118–121. https://doi.org/10.1016/J.PBB.2014.03.011

Namba, M. D., Kupchik, Y. M., Spencer, S. M., Garcia-Keller, C., Goenaga, J. G., Powell, G. L., Vicino, I. A., Hogue, I. B., & Gipson, C. D. (2020). Accumbens neuroimmune signaling and dysregulation of astrocytic glutamate transport underlie conditioned nicotine-seeking behavior. Addiction Biology, 25(5), e12797. https://doi.org/10.1111/ADB.12797

Nicholson, K. J., Gilliland, T. M., & Winkelstein, B. A. (2014). Upregulation of GLT-1 by treatment with ceftriaxone alleviates radicular pain by reducing spinal astrocyte activation and neuronal hyperexcitability. Journal of Neuroscience Research, 92(1), 116–129. https://doi.org/10.1002/JNR.23295

Notartomaso, S., Scarselli, P., Mascio, G., Liberatore, F., Mazzon, E., Mammana, S., Gugliandolo, A., Cruccu, G., Bruno, V., Nicoletti, F., & Battaglia, G. (2020). N-Acetylcysteine causes analgesia in a mouse model of painful diabetic neuropathy: Https://Doi.Org/10.1177/1744806920904292, 16. https://doi.org/10.1177/1744806920904292

Quintanilla, E., Rivera-Meza, M., Berr Ios-C Arcamo, P., Salinas-Luypaert, C., Herrera-Marschitz, M., & Israel, Y. (2016). Beyond the “First Hit”: Marked Inhibition by N-Acetyl Cysteine of Chronic Ethanol Intake But Not of Early Ethanol Intake. Parallel Effects on Ethanol-Induced Saccharin Motivation. https://doi.org/10.1111/acer.13031

Quintanilla, M. E., Morales, P., Ezquer, F., Ezquer, M., Herrera-Marschitz, M., & Israel, Y. (2021). Administration of N-acetylcysteine Plus Acetylsalicylic Acid Markedly Inhibits Nicotine Reinstatement Following Chronic Oral Nicotine Intake in Female Rats. Frontiers in Behavioral Neuroscience, 0, 284. https://doi.org/10.3389/FNBEH.2020.617418

Quintanilla, M. E., Rivera-Meza, M., Berríos-Cárcamo, P., Salinas-Luypaert, C., Herrera-Marschitz, M., & Israel, Y. (2016). Beyond the “First Hit”: Marked Inhibition by N-Acetyl Cysteine of Chronic Ethanol Intake But Not of Early Ethanol Intake. Parallel Effects on Ethanol-Induced Saccharin Motivation. Alcoholism: Clinical and Experimental Research, 40(5), 1044–1051. https://doi.org/10.1111/ACER.13031

Ramandi, D., Salmani, M. E., Moghimi, A., Lashkarbolouki, T., & Fereidoni, M. (2021). Pharmacological upregulation of GLT-1 alleviates the cognitive impairments in the animal model of temporal lobe epilepsy. PLOS ONE, 16(1), e0246068. https://doi.org/10.1371/JOURNAL.PONE.0246068

Ramos, K. M., Lewis, M. T., Morgan, K. N., Crysdale, N. Y., Kroll, J. L., Taylor, F. R., Harrison, J. A., Sloane, E. M., Maier, S. F., & Watkins, L. R. (2010). Spinal upregulation of glutamate transporter GLT-1 by ceftriaxone: therapeutic efficacy in a range of experimental nervous system disorders. Neuroscience, 169(4), 1888. https://doi.org/10.1016/J.NEUROSCIENCE.2010.06.014

Roberts-Wolfe, D. J., & Kalivas, P. W. (n.d.). Glutamate transporter GLT-1 as a therapeutic target for substance use disorders.

Roberts-Wolfe, D. J., & Kalivas, P. W. (2015). Glutamate transporter GLT-1 as a therapeutic target for substance use disorders. CNS & Neurological Disorders Drug Targets, 14(6), 745. /pmc/articles/PMC4730383/

Saeedi, N., Darvishmolla, M., Tavassoli, Z., Davoudi, S., Heysieattalab, S., Hosseinmardi, N., Janahmadi, M., & Behzadi, G. (2021). The role of hippocampal glial glutamate transporter (GLT-1) in morphine-induced behavioral responses. Brain and Behavior. https://doi.org/10.1002/BRB3.2323

Sari, Y., Prieto, A. L., Barton, S. J., Miller, B. R., & Rebec, G. V. (2010). Ceftriaxone-induced up-regulation of cortical and striatal GLT1 in the R6/2 model of Huntington’s disease. Journal of Biomedical Science 2010 17:1, 17(1), 1–5. https://doi.org/10.1186/1423-0127-17-62

Sci-Hub | Evaluation of N-acetylcysteine on ethanol self-administration in ethanol-dependent rats. Neuropharmacology | 10.1016/j.neuropharm.2019.03.010. (n.d.). Retrieved August 29, 2021, from https://sci-hub.se/https://www.sciencedirect.com/science/article/abs/pii/S0028390819300875?via%3Dihub

Siemsen, B. M., Reichel, C. M., Leong, K. C., Garcia-Keller, C., Gipson, C. D., Spencer, S., McFaddin, J. A., Hooker, K. N., Kalivas, P. W., & Scofield, M. D. (2019). Effects of Methamphetamine Self-Administration and Extinction on Astrocyte Structure and Function in the Nucleus Accumbens Core. Neuroscience, 406, 528–541. https://doi.org/10.1016/J.NEUROSCIENCE.2019.03.040

Smaga, I., Fierro, D., Mesa, J., Filip, M., & Knackstedt, L. A. (2020). Molecular changes evoked by the beta-lactam antibiotic ceftriaxone across rodent models of substance use disorder and neurological disease. Neuroscience & Biobehavioral Reviews, 115, 116–130. https://doi.org/10.1016/J.NEUBIOREV.2020.05.016

Soni, N., Reddy, B. V. K., & Kumar, P. (2014). GLT-1 transporter: An effective pharmacological target for various neurological disorders. Pharmacology Biochemistry and Behavior, 127, 70–81. https://doi.org/10.1016/J.PBB.2014.10.001

Tai, C. H., Bellesi, M., Chen, A. C., Lin, C. L., Li, H. H., Lin, P. J., Liao, W. C., Hung, C. S., Schwarting, R. K., & Ho, Y. J. (2019). A new avenue for treating neuronal diseases: Ceftriaxone, an old antibiotic demonstrating behavioral neuronal effects. Behavioural Brain Research, 364, 149–156. https://doi.org/10.1016/J.BBR.2019.02.020

Trantham-Davidson, H., LaLumiere, R. T., Reissner, K. J., Kalivas, P. W., & Knackstedt, L. A. (2012). Ceftriaxone Normalizes Nucleus Accumbens Synaptic Transmission, Glutamate Transport, and Export following Cocaine Self-Administration and Extinction Training. Journal of Neuroscience, 32(36), 12406–12410. https://doi.org/10.1523/JNEUROSCI.1976-12.2012

Wilkie, C. M., Barron, J. C., Brymer, K. J., Barnes, J. R., Nafar, F., & Parsons, M. P. (2021a). The Effect of GLT-1 Upregulation on Extracellular Glutamate Dynamics. Frontiers in Cellular Neuroscience, 15, 661412. https://doi.org/10.3389/FNCEL.2021.661412

Wilkie, C. M., Barron, J. C., Brymer, K. J., Barnes, J. R., Nafar, F., & Parsons, M. P. (2021b). The Effect of GLT-1 Upregulation on Extracellular Glutamate Dynamics. Frontiers in Cellular Neuroscience, 15, 661412. https://doi.org/10.3389/FNCEL.2021.661412

Wilkie, C. M., Barron, J. C., Brymer, K. J., Barnes, J. R., Nafar, F., & Parsons, M. P. (2021c). The Effect of GLT-1 Upregulation on Extracellular Glutamate Dynamics. Frontiers in Cellular Neuroscience, 15, 661412. https://doi.org/10.3389/FNCEL.2021.661412

Wright, D J, Renoir, T., Smith, Z. M., Frazier, A. E., Francis, P. S., Thorburn, D. R., McGee, S. L., Hannan, A. J., & Gray, L. J. (2015). N-Acetylcysteine improves mitochondrial function and ameliorates behavioral deficits in the R6/1 mouse model of Huntington’s disease. Translational Psychiatry, 5(1), e492. https://doi.org/10.1038/TP.2014.131

Wright, Dean J., Gray, L. J., Finkelstein, D. I., Crouch, P. J., Pow, D., Pang, T. Y., Li, S., Smith, Z. M., Francis, P. S., Renoir, T., & Hannan, A. J. (2016). N-acetylcysteine modulates glutamatergic dysfunction and depressive behavior in Huntington’s disease. Human Molecular Genetics, 25(14), 2923–2933. https://doi.org/10.1093/HMG/DDW144

X, L., T, H., Y, W., JL, W., XB, Y., HC, Z., RR, W., R, D., XL, W., J, C., & D, H. (2020). Ceftriaxone Relieves Trigeminal Neuropathic Pain Through Suppression of Spatiotemporal Synaptic Plasticity via Restoration of Glutamate Transporter 1 in the Medullary Dorsal Horn. Frontiers in Cellular Neuroscience, 14. https://doi.org/10.3389/FNCEL.2020.00199

Zhao, Z., Hiraoka, Y., Ogawa, H., & Tanaka, K. (2018). Region-specific deletions of the glutamate transporter GLT1 differentially affect nerve injury-induced neuropathic pain in mice. Glia, 66(9), 1988–1998. https://doi.org/10.1002/GLIA.23452

Zumkehr, J., Rodriguez-Ortiz, C. J., Cheng, D., Kieu, Z., Wai, T., Hawkins, C., Kilian, J., Lim, S. L., Medeiros, R., & Kitazawa, M. (2015). Ceftriaxone ameliorates tau pathology and cognitive decline via restoration of glial glutamate transporter in a mouse model of Alzheimer’s disease. Neurobiology of Aging, 36(7), 2260–2271. https://doi.org/10.1016/J.NEUROBIOLAGING.2015.04.005

Publicado

2022-11-11

Número

Sección

Artículos de Revisión/Review Articles

Cómo citar

Guzmán-Priego, C. G., Benitez Arias, H., Granados Villalpando, J. M. ., & Totosau Betancourt, L. (2022). Analysis of the effectiveness and risk benefit of N acetyl cysteine compared to ceftriaxone in the expression of GLT1 transporters. Multidisciplinary Health Research, 7(1). https://doi.org/10.19136/mh5ganthff096cd