Método de degradación de antibióticos y evaluación de la actividad antibiótica residual


  • Rene Sanjuan-Galindo Centro de Investigación e Innovación Tecnológica, Tecnológico Nacional de México, Instituto Tecnológico de Nuevo León, Apodaca, N.L., México
  • Armando Emiliano Peña-González Centro de Investigación e Innovación Tecnológica, Tecnológico Nacional de México, Instituto Tecnológico de Nuevo León, Apodaca, N.L., México
  • Miguel Angel Reyes-González Investigador de Cátedras CONACyT, Centro de Investigación e Innovación Tecnológica, Tecnológico Nacional de México, Instituto Tecnológico de Nuevo León, Apodaca, Nuevo León, México
  • Cinthia Guadalupe Aba-Guevara Investigador de Cátedras CONACyT, Centro de Investigación e Innovación Tecnológica, Tecnológico Nacional de México, Instituto Tecnológico de Nuevo León, Apodaca, Nuevo León, México
  • Norma Alicia Ramos-Delgado Investigador de Cátedras CONACyT, Centro de Investigación e Innovación Tecnológica, Tecnológico Nacional de México, Instituto Tecnológico de Nuevo León, Apodaca, Nuevo León, México

Palabras clave:

Degradación fotocatalítica, Actividad antibiótica residual, P. ostreatus, Ciprofloxacina


Se describen la degradación y actividad antibiótica de ciprofloxacina (CIP) en solución acuosa en experimentos con concentración inicial de 10, 25 y 50 mgL-1 y pH 4.5. Primero se desarrolló un proceso de fotocatálisis utilizando TiO2 como catalizador y luz UVC de 254 nm. Se determinó el avance de la degradación mediante espectrofotometría UV-Vis y el carbono mineralizado mediante análisis TOC. Se observó que se logró la degradación de la CIP pero la solución continuó presentando actividad antibiótica. El medio residual de la degradación se enriqueció con el nutriente TSB y se inoculó el hongo Pleorotus ostreatus. Este cultivo se mantuvo en agitación orbital por dos semanas y al término se evaluó la actividad enzimática en el medio. Se observó que la actividad antibiótica se redujo al 100 %, 68 % y 51 % para las concentraciones de 10, 25 y 50 mg L-1, respectivamente.


Bansal, O. P. (2019). Antibiotics in hospital effluents and their impact on the antibiotics resistant bacteria and remediation of the antibiotics: A review. Network Pharmacology, 4(3–4), 6–30.

Awad, Y. M., Kim, S. C., Abd El-Azeem, S. A. M., Kim, K. H., Kim, K. R., Kim, K., … Ok, Y. S. (2014). Veterinary antibiotics contamination in water, sediment, and soil near a swine manure composting facility. Environmental Earth Sciences, 71(3), 1433–1440.

Kumar, M., Jaiswal, S., Sodhi, K. K., Shree, P., Singh, D. K., Agrawal, P. K., & Shukla, P. (2019). Antibiotics bioremediation: Perspectives on its ecotoxicity and resistance. Environment International, 124: 448–461.

Picó, Y., & Andreu, V. (2007). Fluoroquinolones in soil-risks and challenges. Analytical and Bioanalytical Chemistry, 387(4), 1287–1299.

Szczepanska, B., Andrzejewska, M., Spica, D., & Klawe, J. J. (2017). Prevalence and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolated from children and environmental sources in urban and suburban areas. BMC Microbiology, 17(1), 1–9.

Chong, M. N., Jin, B., Chow, C. W. K., & Saint, C. (2010). Recent developments in photocatalytic wáter treatment technology: A review. Water Research, 44(10), 2997–3027.

Wang, C. C., Li, J. R., Lv, X. L., Zhang, Y. Q., & Guo, G. (2014). Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy and Environmental Science, 7(9), 2831–2867.

Zangeneh, H., Zinatizadeh, A. A. L., Habibi, M., Akia, M., & Hasnain Isa, M. (2015). Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. Journal of Industrial and Engineering Chemistry, 26, 1–36.

Singh, G. D., & Gupta, K. C. (2014). Photo and UV degradation of Ciprofloxacin Antibiotic. International Journal of Current Microbiology and Applied Sciences, 3(6), 641–648.

Kalantary, R. R., Dadban Shahamat, Y., Farzadkia, M., Esrafili, A., & Asgharnia, H. (2015). Photocatalytic degradation and mineralization of diazinon in aqueous solution using nano-TiO2 (Degussa, P25): kinetic and statistical analysis. Desalination and Water Treatment, 55(2), 555–563.

Nakata, K., & Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(3), 169–189.

Wilson, S. C., & Jones, K. C. (1993). Bioremediation of soil contaminated with polinuclear aromatic hydrocarbons (PAHs ): A Review. Environmental Pollution, 81(3), 229–249.

Cohen, R., Persky, L., & Hadar, Y. (2002). Biotechnological applications and potential of wooddegrading mushrooms of the genus Pleurotus. Applied Microbiology and Biotechnology, 58(5), 582–594.

Gavrilescu, M., Demnerová, K., Aamand, J., Agathos, S., & Fava, F. (2015). Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnology, 32(1), 147–156.

Ding, H., Wu, Y., Zou, B., Lou, Q., Zhang, W., Zhong, J., … Dai, G. (2016). Simultaneous removal and degradation characteristics of sulfonamide, tetracycline, and quinolone antibiotics by laccase-mediated oxidation coupled with soil adsorption. Journal of Hazardous Materials, 307, 350–358.

Tuomela, M., & Hatakka, A. (2011). Oxidative Fungal Enzymes for Bioremediation. In Comprehensive Biotechnology, Second Edition (Second Edi, Vol. 6). Elsevier B.V.

Van Epps, A., & Blaney, L. (2016). Antibiotic Residues in Animal Waste: Occurrence and Degradation in Conventional Agricultural Waste Management Practices. Current Pollution Reports, 2(3), 135–155.

Heeb, S., Fletcher, M. P., Chhabra, S. R., Diggle, S. P., Williams, P., & Cámara, M. (2011). Quinolones: From antibiotics to autoinducers. FEMS Microbiology Reviews, 35(2), 247–274.

Hassani, A., Khataee, A., & Karaca, S. (2015). Photocatalytic degradation of ciprofloxacin by synthesized TiO2 nanoparticles on montmorillonite: Effect of operation parameters and artificial neural network modeling. Journal of Molecular Catalysis A: Chemical, 409, 149–161.

Čvančarová, M., Moeder, M., Filipová, A., & Cajthaml, T. (2015). Biotransformation of

fluoroquinolone antibiotics by ligninolytic fungi - Metabolites, enzymes and residual antibacterial activity. Chemosphere, 136, 311–320.

Yahiat, S., Fourcade, F., Brosillon, S., & Amrane, A. (2011). Removal of antibiotics by an integrated process coupling photocatalysis and biological treatment - Case of tetracycline and tylosin. International Biodeterioration and Biodegradation, 65(7), 997–1003.

Zhu, C., Bao, G., & Huang, S. (2016). Optimization of laccase production in the white-rot fungus Pleurotus ostreatus (ACCC 52857) induced through yeast extract and copper. Biotechnology and Biotechnological Equipment, 30(2), 270–276.

Michael, I., Hapeshi, E., Michael, C., & Fatta-Kassinos, D. (2010). Solar Fenton and solar TiO2 catalytic treatment of ofloxacin in secondary treated effluents: Evaluation of operational and kinetic parameters. Water Research, 44(18), 5450–5462.

Rodríguez, E. M., Márquez, G., Tena, M., Álvarez, P. M., & Beltrán, F. J. (2015). Determination of main species involved in the first steps of TiO2 photocatalytic degradation of organics with the use of scavengers: The case of ofloxacin. Applied Catalysis B: Environmental, 178, 44–53.

Nogueira, V., Lopes, I., Freitas, A. C., Rocha-Santos, T. A. P., Gonçalves, F., Duarte, A. C., & Pereira, R. (2015). Biological treatment with fungi of olive mill wastewater pre-treated by photocatalytic oxidation with nanomaterials. Ecotoxicology and Environmental Safety, 115, 234–242.

Singh, S. K., Khajuria, R., & Kaur, L. (2017). Biodegradation of ciprofloxacin by White rot fungus Pleurotus ostreatus. 3 Biotech, 7(1).

Téllez-Téllez, M., Fernández, F. J., Montiel-González, A. M., Sánchez, C., & Díaz-Godínez, G. (2008). Growth and laccase production by Pleurotus ostreatus in submerged and solid-state fermentation. Applied Microbiology and Biotechnology, 81(4), 675–679.

Páez, L. M. G. (2010). Determinación de la actividad enzimática de lacasas y lignina peroxidasas de hongos degradadores de colorantes seleccionados para el tratamiento de aguas residuales de la industria textil. Tesis de licenciatura. Escuela Politécnica del Ejército.

Bauer, A. W., Kirby, W. M. M., Sherris, J. C., Turck, A. M., & Graevenitz, A. Von. (1978). 40 Microbiology: A Centenary Perspective 1966 Antibiotic Susceptibility Testing by a Standardized Single Disk Method. American Journal of Clinical Pathology, 45(3), 493–496.

Pretali, L., Maraschi, F., Cantalupi, A., Albini, A., & Sturini, M. (2020). Water depollution and photodetoxification by means of TiO2: Fluoroquinolone antibiotics as a case study. Catalysts, 10(6).

Malakootian, M., Nasiri, A., & Amiri Gharaghani, M. (2020). Photocatalytic degradation of ciprofloxacin antibiotic by TiO2 nanoparticles immobilized on a glass plate. Chemical Engineering Communications, 207(1), 56–72.

Patel, H., Gupte, A., & Gupte, S. (2009). Effect of different culture conditions and inducers on production of laccase by a basidiomycete fungal isolate pleurotus ostreatus HP-1 under solid state fermentation. BioResources, 4(1), 268–284

Praveen, K., Usha, K. Y., & Rajasekhar Reddy, B. (2012). Effect of antibiotics on ligninolytic enzymes production from Stereum ostrea and Phanerochaete chrysosporium under submerged fermentation. International Journal of Pharmacy and Pharmaceutical Sciences, 4(SUPPL.3), 135–138.

Paul, T., Dodd, M. C., & Strathmann, T. J. (2010). Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: Transformation products and residual antibacterial activity. Water Research, 44(10), 3121–3132.

Mayans, B., Camacho-Arévalo, R., & García-delgado, C. (2020). An assessment of Pleurotus ostreatus to remove sulfonamides, and its role as a biofilter based on its own spent mushroom substrate Hazard quotient. Environmental Science and Pollution Research.

An, Q., Wu, X.-J., Han, M.-L., Cui, B.-K., He, S.-H., Dai, Y.-C., & Si, J. (2016). Sequential Solid-State and Submerged Cultivation of the White Rot Fungus Pleurotus ostreatus on Biomass and the Activity ofhttp://revistas.ujat.mx/index.php/jobs ISSN: 2448-4997 Lignocellulolytic Enzymes. BioResources, 11(4), 8791–8805. https://doi.org/10.15376/biores.11.4.8791-8805

Tinoco, R., Acevedo, A., Galindo, E., & Serrano-Carreón, L. (2011). Increasing Pleurotus ostreatus laccase production by culture medium optimization and copper/lignin synergistic induction. Journal of Industrial Microbiology and Biotechnology, 38(4), 531–540.

Guillén-Navarro, G. K., Márquez-Rocha, F. J., & Sanchez-Vázquez, J. E. (1998). Producción de biomasa y enzimas ligninolíticas por Pleurotus ostreatus en cultivo sumergido. Revista Iberoamericana de Micología, 15(4), 302–306.