Degradación fotocatalítica de una mezcla de estrógenos en agua utilizando microesferas de BiOBr

Autores/as

  • Khirbet López-Velázquez Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Universidad Politécnica de Tapachula, C.P. 30830, Tapachula, Chiapas, México
  • José L. Cabellos-Quiroz Universidad Politécnica de Tapachula, Carretera Tapachula - Puerto Madero Km. 24 + 300, C.P. 30830, Tapachula, Chiapas, México
  • Edwin R. Hoil-Canul Universidad Politécnica de Tapachula, Carretera Tapachula - Puerto Madero Km. 24 + 300, C.P. 30830, Tapachula, Chiapas, México
  • Adolfo López-Sánchez Universidad Politécnica de Tapachula, Carretera Tapachula - Puerto Madero Km. 24 + 300, C.P. 30830, Tapachula, Chiapas, México
  • Jorge L. Guzmán-Mar Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad s/n, Ciudad Universitaria, C.P. 66455 San Nicolás de los Garza, Nuevo León, México
  • Minerva Villanueva-Rodríguez Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad s/n, Ciudad Universitaria, C.P. 66455 San Nicolás de los Garza, Nuevo León, México

Palabras clave:

contaminación ambiental, fotocatálisis, agua, semiconductores

Resumen

Los estrógenos 17β-estradiol y 17α-etinilestradiol (E2 y EE2) son sustancias potencialmente peligrosas para el medio ambiente, capaces de provocar distintos efectos graves sobre los organismos acuáticos. Por esta razón, en este trabajo se estudió su degradación fotocatalítica en agua utilizando microesferas de oxibromuro de bismuto modificado con urea (BiOBr-U). Los resultados mostraron que las microesferas de BiOBr-U degradaron completamente los contaminantes E2 y EE2 en 240 min bajo luz UV-visible. La eficiencia mejorada de BiOBr-U se atribuyó al incremento del área superficial, mayor absorción de luz y a la separación efectiva de las cargas fotogeneradas. Por lo tanto, las microesferas de BiOBr-U son una opción prometedora para la degradación de contaminantes peligrosos como E2 y EE2 en agua.

Citas

European Parliament. Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water

policy [Internet]. Brussels; 2012. Available from: https://ec.europa.eu/smartregulation/impact/ia_carried_out/docs/ia_2012/com_2011_0876_en.pdf.

Ting YF, Praveena SM. Sources, mechanisms, and fate of steroid estrogens in wastewater treatment plants:

a mini review. Environ Monit Assess. 2017;189:178.

López-Velázquez K, Guzmán-Mar JL, Saldarriaga-Noreña HA, et al. Occurrence and seasonal distribution of five selected endocrine-disrupting compounds in wastewater treatment plants of the Metropolitan Area of Monterrey, Mexico: The role of water quality parameters. Environ Pollut. 2021;

Avar P, Zrínyi Z, Maász G, et al. β-Estradiol and ethinyl-estradiol contamination in the rivers of the Carpathian Basin. Environ Sci Pollut Res. 2016;

Huang B, Sun W, Li X, et al. Effects and bioaccumulation of 17β-estradiol and 17α-ethynylestradiol following long-term exposure in crucian carp. Ecotoxicol Environ Saf. 2015;

Leavy M, Trottmann M, Liedl B, et al. Effects of Elevated β-Estradiol Levels on the Functional Morphology of the Testis - New Insights. Sci Rep. 2017;

Huang B, Tang J, He H, et al. Ecotoxicological effects and removal of 17β-estradiol in chlorella algae. Ecotoxicol Environ Saf. 2019;

Bhandari RK, Vom Saal FS, Tillitt DE. Transgenerational effects from early developmental exposures to bisphenol A or 17α-ethinylestradiol in medaka, Oryzias latipes. Sci Rep. 2015;

Luna TO, Plautz SC, Salice CJ. Chronic Effects of 17α-Ethinylestradiol, Fluoxetine, and the Mixture on Individual and Population-Level End Points in Daphnia magna. Arch Environ Contam Toxicol. 2015;

Yang Y, Zhang C, Lai C, et al. BiOX (X = Cl, Br, I) photocatalytic nanomaterials: Applications for fuels and environmental management. Adv. Colloid Interface Sci. 2018.

Cheng H, Huang B, Dai Y. Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale. 2014.

Yang Y, Geng L, Guo Y, et al. Morphology evolution and excellent visible-light photocatalytic activity of BiOBr hollow microspheres. J Chem Technol Biotechnol. 2017;92:1236–1247.

Wang Q, Jiao D, Lian J, et al. Preparation of efficient visible-light-driven BiOBr/Bi2O3 heterojunction composite with enhanced photocatalytic activities. J Alloys Compd [Internet]. 2015;649:474–482. Available from: http://dx.doi.org/10.1016/j.jallcom.2015.07.126.

Song MX, Du M, Liu Q, et al. Enhancement of photocatalytic activities in hierarchical BiOBr microflowers induced by oxygen vacancies. Catal Today. 2018;335, 193-199.

Lyu J, Hu Z, Li Z, et al. Removal of tetracycline by BiOBr microspheres with oxygen vacancies: Combination of adsorption and photocatalysis. J Phys Chem Solids. 2019;

Wang XJ, Zhao Y, Li FT, et al. A Chelation Strategy for In-situ Constructing Surface Oxygen Vacancy on {001} Facets Exposed BiOBr Nanosheets. Sci Rep. 2016;6:24918.

Jiang GH, Li X, Wei Z, et al. Effects of N and/or S doping on structure and photocatalytic properties of BiOBr crystals. Acta Metall Sin (English Lett. 2015;28:460–466.

López-Velázquez K, Guzmán-Mar JL, Hernández-Ramírez A, et al. Synthesis of Fe–BiOBr–N by microwaveassisted solvothermal method: Characterization and evaluation of its photocatalytic properties. Mater Sci Semicond Process. 2021;123.

Jiang G, Li X, Wei Z, et al. Growth of N-doped BiOBr nanosheets on carbon fibers for photocatalytic degradation of organic pollutants under visible light irradiation. Powder Technol. 2014;260:84-89.

Lee GJ, Zheng YC, Wu JJ. Fabrication of hierarchical bismuth oxyhalides (BiOX, X = Cl, Br, I) materials and application of photocatalytic hydrogen production from water splitting. Catal Today. 2018;

Lin L, Huang M, Long L, et al. Fabrication of a three-dimensional BiOBr/BiOI photocatalyst with enhanced visible light photocatalytic performance. Ceram Int. 2014;40:11493–11501.

Sun D, Huang C, Yuan Y, et al. Synthesis and photocatalytic activity of BiOBr hierarchical structures constructed by porous nanosheets with exposed (110) facets. Catal Today. 2019;335:429–436.

Imam SS, Adnan R, Kaus NHM. Room-temperature in situ synthesis of BiOBr/Bi 2 O 3 composites for the catalytic degradation of ciprofloxacin using indoor fluorescent light illumination. SN Appl Sci 2019 18 [Internet]. 2019 [cited 2021 Jul 12];1:1–15. Available from:

https://link.springer.com/article/10.1007/s42452-019-0851-3.

Wang D, Shen H, Guo L, et al. Porous BiOBr/Bi2MoO6 Heterostructures for Highly Selective Adsorption of Methylene Blue. ACS Omega. 2016;1:566–577.

Li W, Zou Y, Geng X, et al. Constructing highly catalytic oxidation over BiOBr-based hierarchical microspheres: Importance of redox potential of doped cations. Mol Catal [Internet]. 2017;438:19–29. Available from: http://dx.doi.org/10.1016/j.mcat.2017.05.017.

Maisang W, Phuruangrat A, Randorn C, et al. Enhanced photocatalytic performance of visible-light-driven BiOBr/BiPO4 composites. Mater Sci Semicond Process. 2018;75:319–326.

Vadivel S, Vanitha M, Muthukrishnaraj A, et al. Graphene oxide-BiOBr composite material as highly efficient photocatalyst for degradation of methylene blue and rhodamine-B dyes. J Water Process Eng. 2014;1:17–26.

Di J, Xia J, Ji M, et al. New insight of Ag quantum dots with the improved molecular oxygen activation ability for photocatalytic applications. Appl Catal B Environ. 2016;

Kong XY, Lee WPC, Ong WJ, et al. Oxygen-Deficient BiOBr as a Highly Stable Photocatalyst for Efficient CO2 Reduction into Renewable Carbon-Neutral Fuels. ChemCatChem. 2016;8:3074–3081.

Chengguang Yue, Chenhao Li, Pingbo Zhang, et al. Efficiently selective oxidation of glycerol by Bi QDs /BiOBr–O v : promotion of molecular oxygen activation by Bi quantum dots and oxygen vacancies. New J Chem [Internet]. 2021 [cited 2021 Jul 9]; Available from:

https://pubs.rsc.org/en/content/articlehtml/2021/nj/d1nj01927a.

Bouziani A, Park J, Ozturk A. Synthesis of α-Fe2O3/TiO2 heterogeneous composites by the sol-gel process and their photocatalytic activity. J Photochem Photobiol A Chem. 2020;400:112718.

Descargas

Publicado

2024-02-06

Número

Sección

Artículo científico