Análisis químico de la degradación del naranja ácido 52 aplicando Tecnologías Avanzadas de Oxidación

Authors

DOI:

https://doi.org/10.19136/jobs.a10n29.6366

Keywords:

Radiación Ultravioleta, Ozono, Peróxido de Hidrógeno, Dióxido de carbono, Contaminación

Abstract

Se realizó la degradación del colorante naranja ácido 52 (NA) aplicando diversas Tecnologías Avanzadas de Oxidación, se utilizó un reactor de recirculación de configuración cilíndrica, la concentración inicial del NA fue de 20 mg/L en 400 mL de solución, el tiempo de tratamiento fue de 60 minutos, tomando muestras cada 10 minutos y analizándolo por espectrometría UV-vis. Se determinó el efecto de los agentes oxidantes utilizados en sistemas individuales y sinérgicos, el tiempo de tratamiento, el pH final, la generación de CO2 y el cambio de la coloración de las muestras. Se obtuvieron eficiencias de hasta 99% al utilizar el método de O3/1 mL H2O2/UV y 60 minutos, el pH final fue de 2.9 atribuido a la generación de subproductos, se obtuvieron 35 mg/L  de CO2 al finalizar el proceso lo que indica que se alcanzó un porcentaje de mineralización, finalmente se observó una disminución del 100% del color.

References

Zulfikhar A Ali et al., “A review of emerging photo induced degradation methods for per- and polyfluoroalkyl substances in water,” CURRENT OPINION IN CHEMICAL ENGINEERING, vol. 41, pp. 100947, 2023, doi: https://doi.org/10.1016/j.coche.2023.100947.

Nada Elmerhi et al., “Enzyme-immobilized hierarchically porous covalent organic framework biocomposite for catalytic degradation of broad-range emerging pollutants in water,” JOURNAL OF HAZARDOUS MATERIALS, vol. 459, pp. 132261, 2023, doi: https://doi.org/10.1016/j.jhazmat.2023.132261.

Mohammed Al-Sharabi et al., “Magnetic zinc oxide/silica microbeads for the photocatalytic degradation of azo dyes” COLLOIDS AND SURFACES A: PHYSICOCHEMICAL AND ENGINEERING ASPECTS, vol. 695, pp. 134169, 2024, doi: https://doi.org/10.1016/j.colsurfa.2024.134169.

Vaishali Gupta et al., “Improved photocatalytic degradation of Rhodamine B dye using Bi0.5Na0.5TiO3 ferroelectric nanoparticles: Optimization of pH and poling” CHEMISTRY OF INORGANIC MATERIALS, vol. 3, pp. 100051, 2024, doi: https://doi.org/10.1016/j.cinorg.2024.100051.

Tao Xia et al., “Degradation of methyl orange by zero-valent tungsten without external oxidants,” DESALINATION AND WATER TREATMENT, vol. 317, pp. 100152, 2024, doi: https://doi.org/10.1016/j.dwt.2024.100152.

Hossein Bayahia, “Schinus molle extract mediated green synthesis of iron niobate photocatalyst for the degradation of methyl orange dye under visible light,” JOURNAL OF SAUDI CHEMICAL SOCIETY, vol. 28, pp. 101876, 2024, doi: https://doi.org/10.1016/j.jscs.2024.101876.

Chen, J.Q et al., “Study on degradation of methyl orange using pelagite as photocatalyst,” JOURNAL OF HAZARDOUS MATERIALS B, vol. 138, pp. 182-186, 2006, doi: https://doi.org/10.1016/j.jhazmat.2006.05.049.

Brajendra Singh et al., “Wastewater treatment using Fe-doped perovskite manganites by photocatalytic degradation of methyl orange, crystal violet and indigo carmine dyes in tungsten bulb/sunlight,” JOURNAL OF RARE EARTHS, vol. 41, pp. 1311e1322, 2023, doi: https://doi.org/10.1016/j.jre.2022.09.010.

Parvez Mahbub A Ali et al., “Scalability of advanced oxidation processes (AOPs) in industrial applications: A review,” JOURNAL OF ENVIRONMENTAL MANAGEMENT, vol. 345, pp.: 118861, 2023, https://doi.org/10.1016/j.jenvman.2023.118861.

Manoj P. Rayaroth et al., “Advanced oxidation processes (AOPs) based wastewater treatment - unexpected nitration side reactions - a serious environmental issue: A review” CHEMICAL ENGINEERING JOURNAL, vol. 430, pp.: 133002, 2022, doi: https://doi.org/10.1016/j.cej.2021.133002

M.M. M’Arimi et al., “Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review,” RENEWABLE AND SUSTAINABLE ENERGY REVIEWS, vol. 121, pp.: 109669, 2020, https://doi.org/10.1016/j.rser.2019.109669

Tayyaba Jamil, “Role of advance oxidation processes (AOPs) in textile wastewater treatment: A critical review” DESALINATION AND WATER TREATMENT, vol. 318, pp. : 100387, 2024, doi: https://doi.org/10.1016/j.dwt.2024.100387

Zohaib Saddique et al., “Band engineering of BiOBr based materials for photocatalytic wastewater treatment via advanced oxidation processes (AOPs) – A review” WATER RESOURCES AND INDUSTRY, vol. 29, pp. 100211, 2023, doi: https://doi.org/10.1016/j.wri.2023.100211

Eman H. Khader et al., “Recent advances in photocatalytic advanced oxidation processes for organic compound degradation: A review” DESALINATION AND WATER TREATMENT, vol. 318, pp. 100384, 2024, doi: https://doi.org/10.1016/j.dwt.2024.100384

Stephan Zimmermann et al., “Degradation and mineralization of anti-cancer drugs Capecitabine, Bicalutamide and Irinotecan by UV-irradiation and ozone”, CHEMOSPHERE, vol. 356, pp. 141780, 2024, doi: https://doi.org/10.1016/j.chemosphere.2024.141780

Lin Du et al., “Degradation mechanism of Methyl Orange by electrochemical process on RuOx–PdO/Ti electrode”, WATER SCIENCE & TECHNOLOGY, vol. 63, pp. 1539-1545, 2021, doi: 10.2166/wst.2011.414

Vanessa N. Lima et al., “Application of the Fenton’s process in a bubble column reactor for hydroquinone degradation”, ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, pp. 1-12, 2017, doi: https://doi.org/10.1007/s11356-017-0746-z

Downloads

Published

2024-12-16

Issue

Section

Artículo científico

How to Cite

Jaramillo Sierra, B., Díaz Martínez , A., Mercado Cabrera, A., & Ibañez Olvera, M. . (2024). Análisis químico de la degradación del naranja ácido 52 aplicando Tecnologías Avanzadas de Oxidación. Journal of Basic Sciences, 10(29), 27-36. https://doi.org/10.19136/jobs.a10n29.6366