CORONAVIRUS EN AVES ACUÁTICAS

Autores/as

  • Gabriel Núñez Nogueira Laboratorio de Hidrobiología y Contaminación Acuática, División Académica de Ciencias Biológicas (DACBiol); Universidad Juárez Autónoma de Tabasco (UJAT)

DOI:

https://doi.org/10.19136/kuxulkab.a26n56.3822

Palabras clave:

Coronavirus, Aves acuáticas, SARS, Patos, Gansos

Resumen

Los coronavirus son agentes patógenos reconocidos por tener un origen animal y ser asociados comúnmente con los ambientes terrestres, particularmente a los mamíferos y aves. Dentro de ellos, existen reportes de su presencia en aves acuáticas, las cuales parecen ser el grupo principal en portar y circular este tipo de virus en poblaciones sanas, jugando así un papel importante para la presencia de estos virus en ambientes terrestres y acuáticos. Aunque la ruta de infección para el COVID-19 por esta vía, no ha sido demostrada a la fecha, existen casos de otras infecciones virales respiratorias, que han llegado a ser transferidas al humano, a partir de aves. Patos, cormoranes, garzas, playeros, gaviotas entre otros tipos, han mostrado ser portadoras de COVs, siendo los patos y gansos los grupos acuáticos para SARS-CoV.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Gabriel Núñez Nogueira, Laboratorio de Hidrobiología y Contaminación Acuática, División Académica de Ciencias Biológicas (DACBiol); Universidad Juárez Autónoma de Tabasco (UJAT)

    Biólogo por la Universidad Nacional Autónoma de México (UNAM); Doctor en investigaciones biológicas por la Universidad de Londres (Gran Bretaña). Fue profesor de la Escuela de Ciencias Biológicas del “Queen Mary College” (Londres); docente del posgrado e investigador del Instituto de Ciencias del Mar y Limnología de la UNAM. Asesor en temas relacionados con la contaminación de plaguicidas, hidrocarburos, metales y acidificación, así como de biología, ecotoxicología y monitoreo ambiental. Actualmente es profesor-investigador y colabora en el Laboratorio de Hidrobiología y Contaminación Acuática de la División Académica de Ciencias Biológicas (DACBiol) en la UJAT.

Referencias

Avendaño López, C. (2020). Aportaciones de las ciencias biomédicas en el estado de alarma motivado por la pandemia del virus SARS-COV-2. Anales de La Real Academia Nacional de Farmacia, 86(1): 09-17. «https://analesranf.com/articulo/8601_op02/»

Barbosa, C.M.; Durigon, E.L.; Thomazelli, L.M.; Ometto, T.; Marcatti, R.; Shiavo Nardi, M.; de Aguiar, D.M.; Batista Pinho, J.; Petry, M.V.; Simão Neto, I.; Serafini, P.; Costa Rodrigues, R.; Mendes de Azevedo, S.; Góes, L.G.B. & de Araujo, J. (2019). Divergent coronaviruses detected in wild birds in Brazil, including a central park in São Paulo. Brazilian Journal of Microbiology, 50(2): 547-556. DOI «https://doi.org/10.1007/s42770-019-00065-7»

Berlanga, H.; Gómez de Silva, H.; Vargas Canales, V.M.; Rodríguez Contreras, V.; Sánchez González, L.A.; Ortega Álvarez, R. & Calderón Parra, R. (2015). Aves de México: lista actualizada de especies y nombres comunes, (p. 117). México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). ISBN 978-607-8326-33-8. DOI «https://doi.org/10.5962/bhl.title.118761»

Booth, M. (2018). Chapter Three - Climate Change and the Neglected Tropical Diseases. In: Rollinson, D. & Stothard, J.R. (Eds.); Advances in Parasitology, (Vol. 100; pp. 39-126). Academic Press. DOI «https://doi.org/10.1016/bs.apar.2018.02.001»

Bosch, A., Pintó, R.M. & Le Guyader, F.S. (2009). 3 - Viral contaminants of molluscan shellfish: detection and characterisation. Shellfish Safety and Quality, 83-107. DOI «https://doi.org/10.1533/9781845695576.2.83»

Bosch, A.; Pintó, R.M. & Guix, S. (2016). Foodborne viruses. Current Opinion in Food Science, 8: 110-119. DOI «https://doi.org/10.1016/j.cofs.2016.04.002»

Bouseettine, R.; Hassou, N.; Bessi, H. & Ennaji, M.M. (2019). Chapter 40 - Waterborne transmission of enteric viruses and their impact on public health. In: Ennaji, M.M. (Ed.); Emerging and Reemerging Viral Pathogens: fundamental and basic virology aspects of human, animal and plant, (Vol. 1; pp. 907-932). Academic Press. DOI «https://doi.org/10.1016/B978-0-12-819400-3.00040-5»

Cavanagh, D. (2005). Coronaviruses in poultry and other birds. Avian Pathology, 34(6): 439-448. DOI «https://doi.org/10.1080/03079450500367682»

Chu, D.K. W.; Leung, C.Y.H.; Gilbert, M.; Joyner, P.H.; Ng, E.M.; Tse, T.M.; Guan, Y.; Peiris, J.S.M. & Poon, L.L.M. (2011). Avian coronavirus in wild aquatic birds. Journal of Virology, 85(23): 12815-12820. DOI «https://doi.org/10.1128/jvi.05838-11»

de Sales Lima, F.E.; Gil, P.; Pedrono, M., Minet, C.; Kwiatek, O.; Souza Campos, F.; Rosado Spilki, F.; Roehe, P.M.; Franco, A.C.; Fridolin Maminiaina, O.; Albina, E. & de Almeida, R.S. (2015). Diverse gammacoronaviruses detected in wild birds from Madagascar. European Journal of Wildlife Research, 61(4): 635-639. DOI «https://doi.org/10.1007/s10344-015-0931-7»

Decaro, N. & Lorusso, A. (2020). Novel human coronavirus (SARS-CoV-2): A lesson from animal coronaviruses. Veterinary Microbiology, 244: 108693. DOI «https://doi.org/https://doi.org/10.1016/j.vetmic.2020.108693»

EFSA (European Food Safety Authority) Panel on Biological Hazards (BIOHAZ). (2011). Scientific opinion on An update on the present knowledge on the occurrence and control of foodborne viruses. EFSA Journal, 9(7): 1-96. DOI «https://doi.org/10.2903/j.efsa.2011.2190»

FAO (Food and Agriculture Organization of the United Nations) & WHO (World Health Organization). (2008). Viruses in food: scientific advice to support risk management activities, (Microbiological Risk Assessment Series; Vol. 13; p. 58). Rome; Italy. Recovered from «https://www.who.int/foodsafety/publications/viruses-food/en/»

Farthing, M.J.G. (1984). Viruses and the Gut. Walwyn Garden City, Hertfordshire: Smith Kline & French LTD.

Hepojoki, S.; Lindh, E.; Vapalahti, O. & Huovilainen, A. (2017). Prevalence and genetic diversity of coronaviruses in wild birds, Finland. Infection Ecology and Epidemiology, 7(1). DOI «https://doi.org/10.1080/20008686.2017.1408360»

Kasmi, Y.; Khataby, K.; Souiri, A. & Ennaji, M.M. (2019). Chapter 7 - Coronaviridae: 100,000 years of emergence and reemergence. In: Ennaji, M.M. (Ed.); Emerging and Reemerging Viral Pathogens: fundamental and basic virology aspects of human, animal and plant, (Vol. 1; pp. 127-149). Academic Press. DOI «https://doi.org/10.1016/B978-0-12-819400-3.00007-7»

King, A.W.Q.; Adams, M.J.; Cartens, E.B. & Lefkowitz, E.J. (Eds.). (2012). Virus taxonomy: classification and nomenclatura of viruses, (Ninth report of the International Committee on Taxonomy of Viruses; p. 1338). United States of America: Elsevier. DOI «https://doi.org/10.1016/B978-0-12-384684-6.00068-9»

Leong, J.C. (2008). Fish Viruses. In: Brian W.J.M. & Van Regenmortel, M.H.V (Eds.); Encyclopedia of Virology, (Third Edition; pp. 227-234). Academic Press. DOI «https://doi.org/10.1016/B978-012374410-4.00400-3»

Malik, Y.S.; Sircar, S.; Bhat, S.; Sharun, K.; Dhama, K.; Dadar, M.; Tiwari, R. & Chaicumpa, W. (2020). Emerging novel coronavirus (2019-nCoV)-current scenario, evolutionary perspective based on genome analysis and recent developments. Veterinary Quarterly, 40(1): 68-76. DOI «https://doi.org/10.1080/01652176.2020.1727993»

Nollens, H.H.; Wellehan, J.F.X.; Archer, L.; Lowenstine, L.J. & Gulland, F.M.D. (2010). Detection of a respiratory coronavirus from tissues archived during a pneumonia epizootic in free-ranging Pacific harbor seals 'Phoca vitulina richardsii'. Diseases of Aquatic Organisms, 90(2): 113-120. DOI «https://doi.org/10.3354/dao02190»

Petrović, T. & D’Agostino, M. (2016). Chapter 5 - Viral Contamination of Food. In: Barros-Velázquez, J. (Ed.); Antimicrobial Food Packaging, (pp. 65-79). Academic Press. DOI «https://doi.org/10.1016/B978-0-12-800723-5.00005-X»

Schütze, H. (2016). Chapter 20 - Coronaviruses in Aquatic Organisms. In: Kibenge, F.S.B. & Godoy, M.G. (Eds.); Aquaculture Virology, (pp. 327-335). Academic Press. DOI «https://doi.org/10.1016/B978-0-12-801573-5.00020-6»

Shapiro, D.S. (2017). 74 - Infections acquired from animals other than pets. In: Cohen, J.; Powderly, W.G. & Opal, S.M. (Eds.); Infectious Diseases, (Fourth Edition; pp. 663-669.e2). Elsevier. DOI «https://doi.org/10.1016/b978-0-7020-6285-8.00074-5»

Shi, Z. & Hu, Z. (2008). A review of studies on animal reservoirs of the SARS coronavirus. Virus Research, 133(1): 74-87. DOI «https://doi.org/10.1016/j.virusres.2007.03.012»

Tumpey, T.M.; Suarez, D.L.; Perkins, L.E.L.; Senne, D.A.; Lee, J.; Lee, Y.J.; Mo, I.P.; Sung, H.W. & Swayne, D.E. (2003). Evaluation of a High-Pathogenicity H5N1 Avian Influenza A Virus Isolated from Duck Meat. Avian Diseases, 47(s3): 951-955. DOI «https://doi.org/10.1637/0005-2086-47.s3.951»

WHO (World Health Organization). (2020). Coronavirus disease (COVID-19) advice for the public. Advice for the public, WHO [Web]. Recovered from «https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public»

Woo, P.C.Y.; Lau, S.K.P.; Lam, C.S.F.; Tsang, A.K.L.; Hui, S.-W.; Fan, R.Y.Y.; Martelli, P.; Yuen, K.-Y. (2014). Discovery of a Novel Bottlenose Dolphin Coronavirus Reveals a Distinct Species of Marine Mammal Coronavirus in Gammacoronavirus. Journal of Virology, 88(2): 1318-1331. DOI «https://doi.org/10.1128/jvi.02351-13»

Descargas

Publicado

05-10-2020

Número

Sección

Artículos

Cómo citar

Núñez Nogueira, G. (2020). CORONAVIRUS EN AVES ACUÁTICAS. Kuxulkab’, 26(56), 51-59. https://doi.org/10.19136/kuxulkab.a26n56.3822

Artículos similares

11-11 de 11

También puede Iniciar una búsqueda de similitud avanzada para este artículo.