LOS MANGLARES COMO HOLOBIONTES Y OTRAS HISTORIAS DEL MAR

Autores/as

  • Diego Montes Gabriel Instituto de Ciencias del Mar y Limnología (ICMyL), Universidad Nacional Autónoma de México (UNAM).
  • Mariana B. Becerril Jiménez Instituto de Ciencias del Mar y Limnología (ICMyL), Universidad Nacional Autónoma de México (UNAM).
  • Enrique Hernández Martínez Instituto de Ciencias del Mar y Limnología (ICMyL), Universidad Nacional Autónoma de México (UNAM).
  • Mirna Vázquez Rosas Landa Instituto de Ciencias del Mar y Limnología (ICMyL), Universidad Nacional Autónoma de México (UNAM). https://orcid.org/0000-0002-6928-7930

DOI:

https://doi.org/10.19136/kuxulkab.a30n68.6388

Palabras clave:

Manglar, Holobionte, Microbioma, Conservación, Ecosistema

Resumen

Los manglares son ecosistemas complejos y muy importantes ya que ofrecen protección costera, captura de carbono y proporcionan hábitat para tiburones, rayas, crustáceos, peces entre otros, es por esto que pueden representar auténticos holobiontes, entidades formadas por plantas, animales y una comunidad microbiana interdependiente que ha coevolucionado durante millones de años. Los microbios desempeñan roles cruciales como la fijación de nitrógeno y la solubilización de nutrientes, tanto para las plantas como para el ecosistema entero. Comprender  los manglares como holobiontes es esencial para apreciar su complejidad y tomar decisiones informadas sobre su conservación, esta perspectiva holística puede aplicarse a otros ecosistemas promoviendo una gestión ambiental más efectiva y una mejor comprensión de la vida.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Diego Montes Gabriel, Instituto de Ciencias del Mar y Limnología (ICMyL), Universidad Nacional Autónoma de México (UNAM).

    Estudiante de Licenciatura en Ciencias Genómicas de la Universidad Nacional Autónoma de México (UNAM); partícipe de investigaciones en bioelectroquímica, biorremediación, evolución experimental y metagenómica. En el en el Instituto de Ciencias del Mar y Limnología (ICMyL-UNAM) realiza su tesis sobre el microbioma de manglar contaminado con petróleo y microplásticos, así como la capacidad de este para la degradación de hidrocarburos. 

  • Mariana B. Becerril Jiménez, Instituto de Ciencias del Mar y Limnología (ICMyL), Universidad Nacional Autónoma de México (UNAM).

    Estudiante de Ingeniería Biológica en la Universidad Autónoma Metropolitana (UAM); realiza una estancia en el Instituto de Ciencias del Mar y Limnología (ICMyL) de la Universidad Nacional Autónoma de México (UNAM), investigando el ciclo del carbono en metagenomas de manglar. 

  • Enrique Hernández Martínez, Instituto de Ciencias del Mar y Limnología (ICMyL), Universidad Nacional Autónoma de México (UNAM).

    Ilustrador mexicano y biólogo por la Universidad Nacional Autónoma de México (UNAM), colaborador en publicaciones educativas y de divulgación; expositor de arte naturalista. 

  • Mirna Vázquez Rosas Landa, Instituto de Ciencias del Mar y Limnología (ICMyL), Universidad Nacional Autónoma de México (UNAM).

    Doctora por el Instituto de Ecología de la Universidad Nacional Autónoma de México (UNAM); investigadora del Instituto de Ciencias del Mar y Limnología (ICMyL-UNAM); su atención se centra al estudio de las comunidades microbianas de los ecosistemas marinos, su distribución y papel en la biogeoquímica de la Tierra, utilizando enfoques computacionales y experimentales.

Referencias

Adame, M.F.; Cormier, N.; Taillardat, P.; Iram, N.; Rovai, A.; Sloey, T.M.; Yando, E.S.; Blanco-Libreros, J.F.; Arnaud, M.; Jennerjahn, T.; Lovelock, C.E.; Friess, D.; Reithmaier, G.M.S.; Buelow, C.A.; Muhammad-Nor, S.M.; Twilley, R.R. & Ribeiro, R.A. (2024). Deconstructing the mangrove carbon cycle: gains, transformation, and losses. Ecosphere, 15(3): e4806. https://doi.org/10.1002/ecs2.4806

Alongi, D.M. (2005). Mangrove–microbe–soil relations. In: Kistensen, E.; Haese, R.R. & Kostka, J.E. (Eds.); Interactions between macro‐ and microorganisms in marine sediments (pp. 85-103). American Geophysical Union as part of the Coastal and Estuarine Studies. https://doi.org/10.1029/CE060p0085

Alongi, D.M. (2014). Carbon cycling and storage in mangrove forests. Annual Review of Marine Science, 6: 195–219. https://doi.org/10.1146/annurev-marine-010213-135020

Alongi, D.M. (2020). Carbon cycling in the World’s mangrove ecosystems revisited: significance of Non-Steady state diagenesis and subsurface linkages between the forest floor and the coastal ocean. Forests, 11(9): 977. https://doi.org/10.3390/f11090977

Alvarenga, D.O.; Rigonato, J.; Branco, L.H.Z., & Fiore, M.F. (2015). Cyanobacteria in mangrove ecosystems. Biodiversity and Conservation, 24: 799–817. https://doi.org/10.1007/s10531-015-0871-2

Bertics, V.J. & Ziebis, W. (2009). Biodiversity of benthic microbial communities in bioturbated coastal sediments is controlled by geochemical microniches. The ISME Journal, 3: 1269–1285. https://doi.org/10.1038/ismej.2009.62

Bosch, T.C.G. & Miller, D.J. (2016). The holobiont imperative: perspectives from early emerging animals (p. 155). Springer Vienna. eBook ISBN 978-3-7091-1896-2. https://doi.org/10.1007/978-3-7091-1896-2

Cárdenas, A.; Ye, J.; Ziegler, M.; Payet, J.P.; McMinds, R.; Vega Thurber, R. & Voolstra, C.R. (2020). Coral-associated viral assemblages from the central Red Sea align with host species and contribute to holobiont genetic diversity. Frontiers in Microbiology, 11: 572534. https://doi.org/10.3389/fmicb.2020.572534

Crossin, G.T.; Heupel, M.R.; Holbrook, C.M.; Hussey, N.E.; Lowerre-Barbieri, S.K.; Nguyen, V.M.; Raby, G.D.; & Cooke, S.J. (2017). Acoustic telemetry and fisheries management. Ecological Applications, 27(4): 1031–1049. https://doi.org/10.1002/eap.1533

Davy, L.E.; Simpfendorfer, C.A. & Heupel, M.R. (2015). Movement patterns and habitat use of juvenile mangrove whiprays (Himantura granulata). Marine & Freshwater Research, 66(6): 481–492. https://doi.org/10.1071/MF14028

Doering, T.; Maire, J.; van Oppen, M.J.H. & Blackall, L.L. (2023). Advancing coral microbiome manipulation to build long-term climate resilience. Microbiology Australia, 44(1): 36–40. https://doi.org/10.1071/MA23009

Fajriyah, N. (2024). Community-Based blue economy development in Mangrove Ecosystems (Case study in the Segara Anakan Lagoon, Cilacap Regency). IOP Conference Series: Earth and Environmental Science, 1314: 012055. https://doi.org/10.1088/1755-1315/1314/1/012055

Frame, D.J. & Stone, D.A. (2013). Assessment of the first consensus prediction on climate change. Nature Climate Change, 3: 357–359. https://doi.org/10.1038/nclimate1763

Hammerschlag, N.; Morgan, A. & Serafy, J.E. (2010). Relative predation risk for fishes along a subtropical mangrove–seagrass ecotone. Marine Ecology Progress Series, 401, 259–267. https://doi.org/10.3354/MEPS08449

Helgoe, J.; Davy, S.K.; Weis, V.M. & Rodriguez-Lanetty, M. (2024). Triggers, cascades, and endpoints: connecting the dots of coral bleaching mechanisms. Biological Reviews of the Cambridge Philosophical Society, 99(3): 715–752. https://doi.org/10.1111/brv.13042

Heupel, M.R.; Kanno, S.; Martins, A.P.B. & Simpfendorfer, C.A. (2018). Advances in understanding the roles and benefits of nursery areas for elasmobranch populations. Marine and Freshwater Research, 70(7): 897–907. https://doi.org/10.1071/MF18081

Holguin, G.; Guzman, M.A. & Bashan, Y. (1992). Two new nitrogen-fixing bacteria from the rhizosphere of mangrove trees: Their isolation, identification and in vitro interaction with rhizosphere Staphylococcus sp. FEMS Microbiology Letters, 10(3): 207–216. https://doi.org/10.1111/j.1574-6968.1992.tb05777.x

Holguin, G.; Vazquez, P. & Bashan, Y. (2001). The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biology and Fertility of Soils, 33: 265–278. https://doi.org/10.1007/s003740000319

Hossain, M.; Siddique, M.R.H.; Abdullah, S.M.R.; Saha, S.; Ghosh, D.C.; Rahman, M.S. & Limon, S.H. (2013). Nutrient dynamics associated with leaching and microbial decomposition of four abundant mangrove species leaf litter of the Sundarbans, Bangladesh. Wetlands, 34(3): 439–448. https://doi.org/10.1007/s13157-013-0510-1

Kneib, R.T. (2002). Salt marsh ecoscapes and production transfers by estuarine nekton in the Southeastern United States. In: Weinstein, M.P. & Kreeger, D.A. (Eds.); Concepts and Controversies in Tidal Marsh Ecology (pp. 267–291). Springer, Dordrecht. https://doi.org/10.1007/0-306-47534-0_13

Knip, D.M.; Heupel, M.R. & Simpfendorfer, C.A. (2010). Sharks in nearshore environments: models, importance, and consequences. Marine Ecology Progress Series, 402: 1–11. https://doi.org/10.3354/meps08498

LaJeunesse, T.C.; Parkinson, J.E.; Gabrielson, P.W.; Jeong, H.J.; Reimer, J.D.; Voolstra, C.R. & Santos, S.R. (2018). Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Current Biology, 28(16): 2570–2580.e6. https://doi.org/10.1016/j.cub.2018.07.008

Liu, Z.; Zhai, F. & Gu, Y. (2023). Mangroves’ role in supporting ecosystem-based techniques to reduce disaster risk and adapt to climate change: a review. Journal of Sea Research, 196: 102449. https://doi.org/10.1016/j.seares.2023.102449

Margulis, L. & Fester, R. (1991). Symbiosis as a source of evolutionary innovation: speciation and morphogenesis (p. 470). The MIT Press. ISBN: 9780262519908

Maria, G.L.; Sridhar, K.R. & Raviraja, N.S. (2005). Antimicrobial and enzyme activity of mangrove endophytic fungi of southwest coast of India. Journal of Agricultural Technology, 1(1): 67–80. Retrieved June 6, 2024 from https://www.thaiscience.info/journals/Article/IJAT/10843227.pdf

Montejo, E. (2023, agosto 30). Reserva de la Biosfera Wanha’: la nueva Área Natural Protegida que alberga un manglar único en el mundo. National Geographic en Español–Ecología [Web]. Consultado en https://www.ngenespanol.com/ecologia/reserva-de-la-biosfera-wanha-nueva-area-natural-protegida-en-mexico/

O’Shea, O.R.; Thums, M.; van Keulen, M. & Meekan, M. (2012). Bioturbation by stingrays at Ningaloo Reef, Western Australia. Marine and Freshwater Research, 63(3): 189–197. https://doi.org/10.1071/MF11180

Pérez-Ceballos, R.; Zaldívar-Jiménez, A.; Canales-Delgadillo, J.; López-Adame, H.; López-Portillo, J. & Merino-Ibarra, M. (2020). Determining hydrological flow paths to enhance restoration in impaired mangrove wetlands. PLOS ONE, 15(1): e0227665. https://doi.org/10.1371/journal.pone.0227665

Primavera, J.H.; Friess, D.A.; Van Lavieren, H. & Lee, S.Y. (2019). Chapter 1 - The Mangrove Ecosystem. In: Sheppard, C. (Ed.); World seas: an environmental evaluation (Second Edition, Volume Three; pp. 1–34). Elsevier Ltd. & Academic Press. ISBN 978-0-12-805052-1. https://doi.org/10.1016/C2015-0-04336-2

Rajendran, N. & Kathiresan, K. (2007). Microbial flora associated with submerged mangrove leaf litter in India. Revista de Biología Tropical, 55(2): 393–400. Retrieved from http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442007000200005&lng=en&tlng=en

Ritchie, K.B. (2006). Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Marine Ecology Progress Series, 322: 1–14. https://doi.org/10.3354/meps322001

Roughgarden, J. (2023). Holobiont evolution: population theory for the hologenome. The American Naturalist, 201(6): 763–778. https://doi.org/10.1086/723782

Rowan, R. (1998). Review-diversity and ecology of Zooxanthellae on coral reefs. Journal of Phycology, 34(3): 407–417. https://doi.org/10.1046/j.1529-8817.1998.340407.x

Sagan, L. (1967). On the origin of mitosing cells. Journal of Theoretical Biology, 14(3): 225–274. https://doi.org/10.1016/0022-5193(67)90079-3

Salvucci, E. (2016). Microbiome, holobiont and the net of life. Critical Reviews in Microbiology, 42(3): 485–494. https://doi.org/10.3109/1040841X.2014.962478

Sarker, S.; Masud-Ul-Alam, M.; Hossain, M.S.; Rahman Chowdhury, S. & Sharifuzzaman, S. M. (2021). A review of bioturbation and sediment organic geochemistry in mangroves. Geological Journal, 56(5): 2439–2450. https://doi.org/10.1002/gj.3808

Scherer, B.P.; Mason, O.U. & Mast, A.R. (2022). Bacterial communities vary across populations and tissue type in red mangroves (‘Rhizophora mangle’, Rhizophoraceae) along an expanding front. FEMS Microbiology Ecology, 98(12): fiac139. https://doi.org/10.1093/femsec/fiac139

Scott, C.B. (2024). Long-term dynamics and theoretical considerations in coral holobiont adaptation (Dissertation presented for the degree of Doctor of Philosophy). The University of Texas at Austin. https://repositories.lib.utexas.edu/bitstreams/b8f5463c-445f-4121-9d90-82283bdec239/download

Segaran, T.C.; Azra, M.N.; Lananan, F.; Burlakovs, J.; Vincevica-Gaile, Z.; Rudovica, V.; Grinfelde, I.; Rahim, N.H.A. & Satyanarayana, B. (2023). Mapping the link between climate change and mangrove forest: a global overview of the literature. Forests, 14(2): 421. https://doi.org/10.3390/f14020421

Shipley, O.N.; Matich, P.; Hussey, N.E.; Brooks, A.M.L.; Chapman, D.; Frisk, M.G.; Guttridge, A.E.; Guttridge, T.L.; Howey, L.A.; Kattan, S.; Madigan, D.J.; O’Shea, O.; Polunin, N.V.; Power, M.; Smukall, M.J.; Schneider, E.V.C.; Shea, B.D.; Talwar, B.S.; Winchester, M.; Brooks, E.J. & Gallagher, A.J. (2023). Energetic connectivity of diverse elasmobranch populations – implications for ecological resilience. Proceedings of the Royal Society B: biological sciences, 290: 20230262. https://doi.org/10.1098/rspb.2023.0262

Singh, B.K.; Liu, H. & Trivedi, P. (2020). Eco-holobiont: a new concept to identify drivers of host-associated microorganisms. Environmental microbiology, 22(2): 564–567. https://doi.org/10.1111/1462-2920.14900

Skillings, D. (2016). Holobionts and the ecology of organisms: multi-species communities or integrated individuals? Biology & Philosophy, 31: 875–892. https://doi.org/10.1007/s10539-016-9544-0

Spalding, M.; Kainuma, M. & Collins, L. (2010). World Atlas of Mangroves (p. 336). Routledge. eBook ISBN 9781849776608. https://doi.org/10.4324/9781849776608

Thompson, J.R.; Rivera, H.E.; Closek, C.J. & Medina, M. (2015). Microbes in the coral holobiont: partners through evolution, development, and ecological interactions. Frontiers in cellular and infection microbiology, 4: 176. https://doi.org/10.3389/fcimb.2014.00176

Vazquez, P.; Holguin, G.; Puente, M.E.; Lopez-Cortes, A. & Bashan, Y. (2000). Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils, 30(5): 460–468. https://doi.org/10.1007/s003740050024

Wild, C.; Woyt, H. & Huettel, M. (2005). Influence of coral mucus on nutrient fluxes in carbonate sands. Marine Ecology Progress Series, 287: 87–98. http://dx.doi.org/10.3354/meps287087

Yu, X.; Tu, Q.; Liu, J.; Peng, Y.; Wang, C.; Xiao, F.; Lian, Y.; Yang, X.; Hu, R.; Yu, H.; Qian, L.; Wu, D.; He, Z.; Shu, L., He, Q.; Tian, Y.; Wang, F.; Wang, S.; Wu, B.; Huang, Z.; He, J.; Yan, Q. & He, Z. (2023). Environmental selection and evolutionary process jointly shape genomic and functional profiles of mangrove rhizosphere microbiomes. mLife, 2(3): 253–266. https://doi.org/10.1002/mlf2.12077

Zhang, L.; Guo, Z.H. & Li, Z.Y. (2013). Carbon storage and carbon sink of mangrove wetland: research progress. The journal of applied ecology, 24(4): 1153–1159. https://pubmed.ncbi.nlm.nih.gov/23898678/

Zhang, N.; Thompson, C.E.L. & Townend, I.H. (2023). The effects of disturbance on the microbial mediation of sediment stability. Limnology and Oceanography, 68(7): 1567–1579. https://doi.org/10.1002/lno.12368

Descargas

Publicado

12-09-2024

Cómo citar

Montes Gabriel, D., Becerril Jiménez, M. B., Hernández Martínez, E., & Vázquez Rosas Landa, M. (2024). LOS MANGLARES COMO HOLOBIONTES Y OTRAS HISTORIAS DEL MAR. Kuxulkab’, 30(68), e6388. https://doi.org/10.19136/kuxulkab.a30n68.6388

Artículos similares

31-40 de 66

También puede Iniciar una búsqueda de similitud avanzada para este artículo.