MANGROVES AS HOLOBIONTS AND OTHER SEA STORIES
DOI:
https://doi.org/10.19136/kuxulkab.a30n68.6388Keywords:
Mangrove, Holobiont, Microbiome, Conservation, EcosystemAbstract
Mangroves are complex and very important ecosystems as they offer coastal protection, carbon sequestration and provide habitat for sharks, rays, crustaceans, fish and others, which is why they may represent true holobionts, entities formed by plants, animals and an interdependent microbial community that has co-evolved for millions of years. Microbes play crucial roles such as nitrogen fixation and nutrient solubilization for both plants and the entire ecosystem. Understanding mangroves as holobionts is essential to appreciate their complexity and make informed decisions about their conservation; this holistic perspective can be applied to other ecosystems promoting more effective environmental management and a better understanding of life.
Downloads
References
Adame, M.F.; Cormier, N.; Taillardat, P.; Iram, N.; Rovai, A.; Sloey, T.M.; Yando, E.S.; Blanco-Libreros, J.F.; Arnaud, M.; Jennerjahn, T.; Lovelock, C.E.; Friess, D.; Reithmaier, G.M.S.; Buelow, C.A.; Muhammad-Nor, S.M.; Twilley, R.R. & Ribeiro, R.A. (2024). Deconstructing the mangrove carbon cycle: gains, transformation, and losses. Ecosphere, 15(3): e4806. https://doi.org/10.1002/ecs2.4806
Alongi, D.M. (2005). Mangrove–microbe–soil relations. In: Kistensen, E.; Haese, R.R. & Kostka, J.E. (Eds.); Interactions between macro‐ and microorganisms in marine sediments (pp. 85-103). American Geophysical Union as part of the Coastal and Estuarine Studies. https://doi.org/10.1029/CE060p0085
Alongi, D.M. (2014). Carbon cycling and storage in mangrove forests. Annual Review of Marine Science, 6: 195–219. https://doi.org/10.1146/annurev-marine-010213-135020
Alongi, D.M. (2020). Carbon cycling in the World’s mangrove ecosystems revisited: significance of Non-Steady state diagenesis and subsurface linkages between the forest floor and the coastal ocean. Forests, 11(9): 977. https://doi.org/10.3390/f11090977
Alvarenga, D.O.; Rigonato, J.; Branco, L.H.Z., & Fiore, M.F. (2015). Cyanobacteria in mangrove ecosystems. Biodiversity and Conservation, 24: 799–817. https://doi.org/10.1007/s10531-015-0871-2
Bertics, V.J. & Ziebis, W. (2009). Biodiversity of benthic microbial communities in bioturbated coastal sediments is controlled by geochemical microniches. The ISME Journal, 3: 1269–1285. https://doi.org/10.1038/ismej.2009.62
Bosch, T.C.G. & Miller, D.J. (2016). The holobiont imperative: perspectives from early emerging animals (p. 155). Springer Vienna. eBook ISBN 978-3-7091-1896-2. https://doi.org/10.1007/978-3-7091-1896-2
Cárdenas, A.; Ye, J.; Ziegler, M.; Payet, J.P.; McMinds, R.; Vega Thurber, R. & Voolstra, C.R. (2020). Coral-associated viral assemblages from the central Red Sea align with host species and contribute to holobiont genetic diversity. Frontiers in Microbiology, 11: 572534. https://doi.org/10.3389/fmicb.2020.572534
Crossin, G.T.; Heupel, M.R.; Holbrook, C.M.; Hussey, N.E.; Lowerre-Barbieri, S.K.; Nguyen, V.M.; Raby, G.D.; & Cooke, S.J. (2017). Acoustic telemetry and fisheries management. Ecological Applications, 27(4): 1031–1049. https://doi.org/10.1002/eap.1533
Davy, L.E.; Simpfendorfer, C.A. & Heupel, M.R. (2015). Movement patterns and habitat use of juvenile mangrove whiprays (Himantura granulata). Marine & Freshwater Research, 66(6): 481–492. https://doi.org/10.1071/MF14028
Doering, T.; Maire, J.; van Oppen, M.J.H. & Blackall, L.L. (2023). Advancing coral microbiome manipulation to build long-term climate resilience. Microbiology Australia, 44(1): 36–40. https://doi.org/10.1071/MA23009
Fajriyah, N. (2024). Community-Based blue economy development in Mangrove Ecosystems (Case study in the Segara Anakan Lagoon, Cilacap Regency). IOP Conference Series: Earth and Environmental Science, 1314: 012055. https://doi.org/10.1088/1755-1315/1314/1/012055
Frame, D.J. & Stone, D.A. (2013). Assessment of the first consensus prediction on climate change. Nature Climate Change, 3: 357–359. https://doi.org/10.1038/nclimate1763
Hammerschlag, N.; Morgan, A. & Serafy, J.E. (2010). Relative predation risk for fishes along a subtropical mangrove–seagrass ecotone. Marine Ecology Progress Series, 401, 259–267. https://doi.org/10.3354/MEPS08449
Helgoe, J.; Davy, S.K.; Weis, V.M. & Rodriguez-Lanetty, M. (2024). Triggers, cascades, and endpoints: connecting the dots of coral bleaching mechanisms. Biological Reviews of the Cambridge Philosophical Society, 99(3): 715–752. https://doi.org/10.1111/brv.13042
Heupel, M.R.; Kanno, S.; Martins, A.P.B. & Simpfendorfer, C.A. (2018). Advances in understanding the roles and benefits of nursery areas for elasmobranch populations. Marine and Freshwater Research, 70(7): 897–907. https://doi.org/10.1071/MF18081
Holguin, G.; Guzman, M.A. & Bashan, Y. (1992). Two new nitrogen-fixing bacteria from the rhizosphere of mangrove trees: Their isolation, identification and in vitro interaction with rhizosphere Staphylococcus sp. FEMS Microbiology Letters, 10(3): 207–216. https://doi.org/10.1111/j.1574-6968.1992.tb05777.x
Holguin, G.; Vazquez, P. & Bashan, Y. (2001). The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biology and Fertility of Soils, 33: 265–278. https://doi.org/10.1007/s003740000319
Hossain, M.; Siddique, M.R.H.; Abdullah, S.M.R.; Saha, S.; Ghosh, D.C.; Rahman, M.S. & Limon, S.H. (2013). Nutrient dynamics associated with leaching and microbial decomposition of four abundant mangrove species leaf litter of the Sundarbans, Bangladesh. Wetlands, 34(3): 439–448. https://doi.org/10.1007/s13157-013-0510-1
Kneib, R.T. (2002). Salt marsh ecoscapes and production transfers by estuarine nekton in the Southeastern United States. In: Weinstein, M.P. & Kreeger, D.A. (Eds.); Concepts and Controversies in Tidal Marsh Ecology (pp. 267–291). Springer, Dordrecht. https://doi.org/10.1007/0-306-47534-0_13
Knip, D.M.; Heupel, M.R. & Simpfendorfer, C.A. (2010). Sharks in nearshore environments: models, importance, and consequences. Marine Ecology Progress Series, 402: 1–11. https://doi.org/10.3354/meps08498
LaJeunesse, T.C.; Parkinson, J.E.; Gabrielson, P.W.; Jeong, H.J.; Reimer, J.D.; Voolstra, C.R. & Santos, S.R. (2018). Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Current Biology, 28(16): 2570–2580.e6. https://doi.org/10.1016/j.cub.2018.07.008
Liu, Z.; Zhai, F. & Gu, Y. (2023). Mangroves’ role in supporting ecosystem-based techniques to reduce disaster risk and adapt to climate change: a review. Journal of Sea Research, 196: 102449. https://doi.org/10.1016/j.seares.2023.102449
Margulis, L. & Fester, R. (1991). Symbiosis as a source of evolutionary innovation: speciation and morphogenesis (p. 470). The MIT Press. ISBN: 9780262519908
Maria, G.L.; Sridhar, K.R. & Raviraja, N.S. (2005). Antimicrobial and enzyme activity of mangrove endophytic fungi of southwest coast of India. Journal of Agricultural Technology, 1(1): 67–80. Retrieved June 6, 2024 from https://www.thaiscience.info/journals/Article/IJAT/10843227.pdf
Montejo, E. (2023, agosto 30). Reserva de la Biosfera Wanha’: la nueva Área Natural Protegida que alberga un manglar único en el mundo. National Geographic en Español–Ecología [Web]. Consultado en https://www.ngenespanol.com/ecologia/reserva-de-la-biosfera-wanha-nueva-area-natural-protegida-en-mexico/
O’Shea, O.R.; Thums, M.; van Keulen, M. & Meekan, M. (2012). Bioturbation by stingrays at Ningaloo Reef, Western Australia. Marine and Freshwater Research, 63(3): 189–197. https://doi.org/10.1071/MF11180
Pérez-Ceballos, R.; Zaldívar-Jiménez, A.; Canales-Delgadillo, J.; López-Adame, H.; López-Portillo, J. & Merino-Ibarra, M. (2020). Determining hydrological flow paths to enhance restoration in impaired mangrove wetlands. PLOS ONE, 15(1): e0227665. https://doi.org/10.1371/journal.pone.0227665
Primavera, J.H.; Friess, D.A.; Van Lavieren, H. & Lee, S.Y. (2019). Chapter 1 - The Mangrove Ecosystem. In: Sheppard, C. (Ed.); World seas: an environmental evaluation (Second Edition, Volume Three; pp. 1–34). Elsevier Ltd. & Academic Press. ISBN 978-0-12-805052-1. https://doi.org/10.1016/C2015-0-04336-2
Rajendran, N. & Kathiresan, K. (2007). Microbial flora associated with submerged mangrove leaf litter in India. Revista de Biología Tropical, 55(2): 393–400. Retrieved from http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442007000200005&lng=en&tlng=en
Ritchie, K.B. (2006). Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Marine Ecology Progress Series, 322: 1–14. https://doi.org/10.3354/meps322001
Roughgarden, J. (2023). Holobiont evolution: population theory for the hologenome. The American Naturalist, 201(6): 763–778. https://doi.org/10.1086/723782
Rowan, R. (1998). Review-diversity and ecology of Zooxanthellae on coral reefs. Journal of Phycology, 34(3): 407–417. https://doi.org/10.1046/j.1529-8817.1998.340407.x
Sagan, L. (1967). On the origin of mitosing cells. Journal of Theoretical Biology, 14(3): 225–274. https://doi.org/10.1016/0022-5193(67)90079-3
Salvucci, E. (2016). Microbiome, holobiont and the net of life. Critical Reviews in Microbiology, 42(3): 485–494. https://doi.org/10.3109/1040841X.2014.962478
Sarker, S.; Masud-Ul-Alam, M.; Hossain, M.S.; Rahman Chowdhury, S. & Sharifuzzaman, S. M. (2021). A review of bioturbation and sediment organic geochemistry in mangroves. Geological Journal, 56(5): 2439–2450. https://doi.org/10.1002/gj.3808
Scherer, B.P.; Mason, O.U. & Mast, A.R. (2022). Bacterial communities vary across populations and tissue type in red mangroves (‘Rhizophora mangle’, Rhizophoraceae) along an expanding front. FEMS Microbiology Ecology, 98(12): fiac139. https://doi.org/10.1093/femsec/fiac139
Scott, C.B. (2024). Long-term dynamics and theoretical considerations in coral holobiont adaptation (Dissertation presented for the degree of Doctor of Philosophy). The University of Texas at Austin. https://repositories.lib.utexas.edu/bitstreams/b8f5463c-445f-4121-9d90-82283bdec239/download
Segaran, T.C.; Azra, M.N.; Lananan, F.; Burlakovs, J.; Vincevica-Gaile, Z.; Rudovica, V.; Grinfelde, I.; Rahim, N.H.A. & Satyanarayana, B. (2023). Mapping the link between climate change and mangrove forest: a global overview of the literature. Forests, 14(2): 421. https://doi.org/10.3390/f14020421
Shipley, O.N.; Matich, P.; Hussey, N.E.; Brooks, A.M.L.; Chapman, D.; Frisk, M.G.; Guttridge, A.E.; Guttridge, T.L.; Howey, L.A.; Kattan, S.; Madigan, D.J.; O’Shea, O.; Polunin, N.V.; Power, M.; Smukall, M.J.; Schneider, E.V.C.; Shea, B.D.; Talwar, B.S.; Winchester, M.; Brooks, E.J. & Gallagher, A.J. (2023). Energetic connectivity of diverse elasmobranch populations – implications for ecological resilience. Proceedings of the Royal Society B: biological sciences, 290: 20230262. https://doi.org/10.1098/rspb.2023.0262
Singh, B.K.; Liu, H. & Trivedi, P. (2020). Eco-holobiont: a new concept to identify drivers of host-associated microorganisms. Environmental microbiology, 22(2): 564–567. https://doi.org/10.1111/1462-2920.14900
Skillings, D. (2016). Holobionts and the ecology of organisms: multi-species communities or integrated individuals? Biology & Philosophy, 31: 875–892. https://doi.org/10.1007/s10539-016-9544-0
Spalding, M.; Kainuma, M. & Collins, L. (2010). World Atlas of Mangroves (p. 336). Routledge. eBook ISBN 9781849776608. https://doi.org/10.4324/9781849776608
Thompson, J.R.; Rivera, H.E.; Closek, C.J. & Medina, M. (2015). Microbes in the coral holobiont: partners through evolution, development, and ecological interactions. Frontiers in cellular and infection microbiology, 4: 176. https://doi.org/10.3389/fcimb.2014.00176
Vazquez, P.; Holguin, G.; Puente, M.E.; Lopez-Cortes, A. & Bashan, Y. (2000). Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils, 30(5): 460–468. https://doi.org/10.1007/s003740050024
Wild, C.; Woyt, H. & Huettel, M. (2005). Influence of coral mucus on nutrient fluxes in carbonate sands. Marine Ecology Progress Series, 287: 87–98. http://dx.doi.org/10.3354/meps287087
Yu, X.; Tu, Q.; Liu, J.; Peng, Y.; Wang, C.; Xiao, F.; Lian, Y.; Yang, X.; Hu, R.; Yu, H.; Qian, L.; Wu, D.; He, Z.; Shu, L., He, Q.; Tian, Y.; Wang, F.; Wang, S.; Wu, B.; Huang, Z.; He, J.; Yan, Q. & He, Z. (2023). Environmental selection and evolutionary process jointly shape genomic and functional profiles of mangrove rhizosphere microbiomes. mLife, 2(3): 253–266. https://doi.org/10.1002/mlf2.12077
Zhang, L.; Guo, Z.H. & Li, Z.Y. (2013). Carbon storage and carbon sink of mangrove wetland: research progress. The journal of applied ecology, 24(4): 1153–1159. https://pubmed.ncbi.nlm.nih.gov/23898678/
Zhang, N.; Thompson, C.E.L. & Townend, I.H. (2023). The effects of disturbance on the microbial mediation of sediment stability. Limnology and Oceanography, 68(7): 1567–1579. https://doi.org/10.1002/lno.12368
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Kuxulkab'
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Los autores que publiquen en Kuxulkab' aceptan las siguientes condiciones como política de acceso abierto:
1. Que conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribucion de "Creative Commons", que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
2. El autor puede realizar otros acuerdos contractuales independientes o adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista, como por ejemplo incluirlo en un repositorio institucional o publicarlo en un libro, siempre que se indique claramente que el trabajo se publicó por primera vez en esta revista.