MANGROVES AS HOLOBIONTS AND OTHER SEA STORIES

Authors

  • Diego Montes Gabriel Instituto de Ciencias del Mar y Limnología (ICMyL), Universidad Nacional Autónoma de México (UNAM).
  • Mariana B. Becerril Jiménez Instituto de Ciencias del Mar y Limnología (ICMyL), Universidad Nacional Autónoma de México (UNAM).
  • Enrique Hernández Martínez Instituto de Ciencias del Mar y Limnología (ICMyL), Universidad Nacional Autónoma de México (UNAM).
  • Mirna Vázquez Rosas Landa Instituto de Ciencias del Mar y Limnología (ICMyL), Universidad Nacional Autónoma de México (UNAM). https://orcid.org/0000-0002-6928-7930

DOI:

https://doi.org/10.19136/kuxulkab.a30n68.6388

Keywords:

Mangrove, Holobiont, Microbiome, Conservation, Ecosystem

Abstract

Mangroves are complex and very important ecosystems as they offer coastal protection, carbon sequestration and provide habitat for sharks, rays, crustaceans, fish and others, which is why they may represent true holobionts, entities formed by plants, animals and an interdependent microbial community that has co-evolved for millions of years. Microbes play crucial roles such as nitrogen fixation and nutrient solubilization for both plants and the entire ecosystem. Understanding mangroves as holobionts is essential to appreciate their complexity and make informed decisions about their conservation; this holistic perspective can be applied to other ecosystems promoting more effective environmental management and a better understanding of life.

Downloads

Download data is not yet available.

Author Biographies

  • Diego Montes Gabriel, Instituto de Ciencias del Mar y Limnología (ICMyL), Universidad Nacional Autónoma de México (UNAM).

    Estudiante de Licenciatura en Ciencias Genómicas de la Universidad Nacional Autónoma de México (UNAM); partícipe de investigaciones en bioelectroquímica, biorremediación, evolución experimental y metagenómica. En el en el Instituto de Ciencias del Mar y Limnología (ICMyL-UNAM) realiza su tesis sobre el microbioma de manglar contaminado con petróleo y microplásticos, así como la capacidad de este para la degradación de hidrocarburos. 

  • Mariana B. Becerril Jiménez, Instituto de Ciencias del Mar y Limnología (ICMyL), Universidad Nacional Autónoma de México (UNAM).

    Estudiante de Ingeniería Biológica en la Universidad Autónoma Metropolitana (UAM); realiza una estancia en el Instituto de Ciencias del Mar y Limnología (ICMyL) de la Universidad Nacional Autónoma de México (UNAM), investigando el ciclo del carbono en metagenomas de manglar. 

  • Enrique Hernández Martínez, Instituto de Ciencias del Mar y Limnología (ICMyL), Universidad Nacional Autónoma de México (UNAM).

    Ilustrador mexicano y biólogo por la Universidad Nacional Autónoma de México (UNAM), colaborador en publicaciones educativas y de divulgación; expositor de arte naturalista. 

  • Mirna Vázquez Rosas Landa, Instituto de Ciencias del Mar y Limnología (ICMyL), Universidad Nacional Autónoma de México (UNAM).

    Doctora por el Instituto de Ecología de la Universidad Nacional Autónoma de México (UNAM); investigadora del Instituto de Ciencias del Mar y Limnología (ICMyL-UNAM); su atención se centra al estudio de las comunidades microbianas de los ecosistemas marinos, su distribución y papel en la biogeoquímica de la Tierra, utilizando enfoques computacionales y experimentales.

References

Adame, M.F.; Cormier, N.; Taillardat, P.; Iram, N.; Rovai, A.; Sloey, T.M.; Yando, E.S.; Blanco-Libreros, J.F.; Arnaud, M.; Jennerjahn, T.; Lovelock, C.E.; Friess, D.; Reithmaier, G.M.S.; Buelow, C.A.; Muhammad-Nor, S.M.; Twilley, R.R. & Ribeiro, R.A. (2024). Deconstructing the mangrove carbon cycle: gains, transformation, and losses. Ecosphere, 15(3): e4806. https://doi.org/10.1002/ecs2.4806

Alongi, D.M. (2005). Mangrove–microbe–soil relations. In: Kistensen, E.; Haese, R.R. & Kostka, J.E. (Eds.); Interactions between macro‐ and microorganisms in marine sediments (pp. 85-103). American Geophysical Union as part of the Coastal and Estuarine Studies. https://doi.org/10.1029/CE060p0085

Alongi, D.M. (2014). Carbon cycling and storage in mangrove forests. Annual Review of Marine Science, 6: 195–219. https://doi.org/10.1146/annurev-marine-010213-135020

Alongi, D.M. (2020). Carbon cycling in the World’s mangrove ecosystems revisited: significance of Non-Steady state diagenesis and subsurface linkages between the forest floor and the coastal ocean. Forests, 11(9): 977. https://doi.org/10.3390/f11090977

Alvarenga, D.O.; Rigonato, J.; Branco, L.H.Z., & Fiore, M.F. (2015). Cyanobacteria in mangrove ecosystems. Biodiversity and Conservation, 24: 799–817. https://doi.org/10.1007/s10531-015-0871-2

Bertics, V.J. & Ziebis, W. (2009). Biodiversity of benthic microbial communities in bioturbated coastal sediments is controlled by geochemical microniches. The ISME Journal, 3: 1269–1285. https://doi.org/10.1038/ismej.2009.62

Bosch, T.C.G. & Miller, D.J. (2016). The holobiont imperative: perspectives from early emerging animals (p. 155). Springer Vienna. eBook ISBN 978-3-7091-1896-2. https://doi.org/10.1007/978-3-7091-1896-2

Cárdenas, A.; Ye, J.; Ziegler, M.; Payet, J.P.; McMinds, R.; Vega Thurber, R. & Voolstra, C.R. (2020). Coral-associated viral assemblages from the central Red Sea align with host species and contribute to holobiont genetic diversity. Frontiers in Microbiology, 11: 572534. https://doi.org/10.3389/fmicb.2020.572534

Crossin, G.T.; Heupel, M.R.; Holbrook, C.M.; Hussey, N.E.; Lowerre-Barbieri, S.K.; Nguyen, V.M.; Raby, G.D.; & Cooke, S.J. (2017). Acoustic telemetry and fisheries management. Ecological Applications, 27(4): 1031–1049. https://doi.org/10.1002/eap.1533

Davy, L.E.; Simpfendorfer, C.A. & Heupel, M.R. (2015). Movement patterns and habitat use of juvenile mangrove whiprays (Himantura granulata). Marine & Freshwater Research, 66(6): 481–492. https://doi.org/10.1071/MF14028

Doering, T.; Maire, J.; van Oppen, M.J.H. & Blackall, L.L. (2023). Advancing coral microbiome manipulation to build long-term climate resilience. Microbiology Australia, 44(1): 36–40. https://doi.org/10.1071/MA23009

Fajriyah, N. (2024). Community-Based blue economy development in Mangrove Ecosystems (Case study in the Segara Anakan Lagoon, Cilacap Regency). IOP Conference Series: Earth and Environmental Science, 1314: 012055. https://doi.org/10.1088/1755-1315/1314/1/012055

Frame, D.J. & Stone, D.A. (2013). Assessment of the first consensus prediction on climate change. Nature Climate Change, 3: 357–359. https://doi.org/10.1038/nclimate1763

Hammerschlag, N.; Morgan, A. & Serafy, J.E. (2010). Relative predation risk for fishes along a subtropical mangrove–seagrass ecotone. Marine Ecology Progress Series, 401, 259–267. https://doi.org/10.3354/MEPS08449

Helgoe, J.; Davy, S.K.; Weis, V.M. & Rodriguez-Lanetty, M. (2024). Triggers, cascades, and endpoints: connecting the dots of coral bleaching mechanisms. Biological Reviews of the Cambridge Philosophical Society, 99(3): 715–752. https://doi.org/10.1111/brv.13042

Heupel, M.R.; Kanno, S.; Martins, A.P.B. & Simpfendorfer, C.A. (2018). Advances in understanding the roles and benefits of nursery areas for elasmobranch populations. Marine and Freshwater Research, 70(7): 897–907. https://doi.org/10.1071/MF18081

Holguin, G.; Guzman, M.A. & Bashan, Y. (1992). Two new nitrogen-fixing bacteria from the rhizosphere of mangrove trees: Their isolation, identification and in vitro interaction with rhizosphere Staphylococcus sp. FEMS Microbiology Letters, 10(3): 207–216. https://doi.org/10.1111/j.1574-6968.1992.tb05777.x

Holguin, G.; Vazquez, P. & Bashan, Y. (2001). The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biology and Fertility of Soils, 33: 265–278. https://doi.org/10.1007/s003740000319

Hossain, M.; Siddique, M.R.H.; Abdullah, S.M.R.; Saha, S.; Ghosh, D.C.; Rahman, M.S. & Limon, S.H. (2013). Nutrient dynamics associated with leaching and microbial decomposition of four abundant mangrove species leaf litter of the Sundarbans, Bangladesh. Wetlands, 34(3): 439–448. https://doi.org/10.1007/s13157-013-0510-1

Kneib, R.T. (2002). Salt marsh ecoscapes and production transfers by estuarine nekton in the Southeastern United States. In: Weinstein, M.P. & Kreeger, D.A. (Eds.); Concepts and Controversies in Tidal Marsh Ecology (pp. 267–291). Springer, Dordrecht. https://doi.org/10.1007/0-306-47534-0_13

Knip, D.M.; Heupel, M.R. & Simpfendorfer, C.A. (2010). Sharks in nearshore environments: models, importance, and consequences. Marine Ecology Progress Series, 402: 1–11. https://doi.org/10.3354/meps08498

LaJeunesse, T.C.; Parkinson, J.E.; Gabrielson, P.W.; Jeong, H.J.; Reimer, J.D.; Voolstra, C.R. & Santos, S.R. (2018). Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Current Biology, 28(16): 2570–2580.e6. https://doi.org/10.1016/j.cub.2018.07.008

Liu, Z.; Zhai, F. & Gu, Y. (2023). Mangroves’ role in supporting ecosystem-based techniques to reduce disaster risk and adapt to climate change: a review. Journal of Sea Research, 196: 102449. https://doi.org/10.1016/j.seares.2023.102449

Margulis, L. & Fester, R. (1991). Symbiosis as a source of evolutionary innovation: speciation and morphogenesis (p. 470). The MIT Press. ISBN: 9780262519908

Maria, G.L.; Sridhar, K.R. & Raviraja, N.S. (2005). Antimicrobial and enzyme activity of mangrove endophytic fungi of southwest coast of India. Journal of Agricultural Technology, 1(1): 67–80. Retrieved June 6, 2024 from https://www.thaiscience.info/journals/Article/IJAT/10843227.pdf

Montejo, E. (2023, agosto 30). Reserva de la Biosfera Wanha’: la nueva Área Natural Protegida que alberga un manglar único en el mundo. National Geographic en Español–Ecología [Web]. Consultado en https://www.ngenespanol.com/ecologia/reserva-de-la-biosfera-wanha-nueva-area-natural-protegida-en-mexico/

O’Shea, O.R.; Thums, M.; van Keulen, M. & Meekan, M. (2012). Bioturbation by stingrays at Ningaloo Reef, Western Australia. Marine and Freshwater Research, 63(3): 189–197. https://doi.org/10.1071/MF11180

Pérez-Ceballos, R.; Zaldívar-Jiménez, A.; Canales-Delgadillo, J.; López-Adame, H.; López-Portillo, J. & Merino-Ibarra, M. (2020). Determining hydrological flow paths to enhance restoration in impaired mangrove wetlands. PLOS ONE, 15(1): e0227665. https://doi.org/10.1371/journal.pone.0227665

Primavera, J.H.; Friess, D.A.; Van Lavieren, H. & Lee, S.Y. (2019). Chapter 1 - The Mangrove Ecosystem. In: Sheppard, C. (Ed.); World seas: an environmental evaluation (Second Edition, Volume Three; pp. 1–34). Elsevier Ltd. & Academic Press. ISBN 978-0-12-805052-1. https://doi.org/10.1016/C2015-0-04336-2

Rajendran, N. & Kathiresan, K. (2007). Microbial flora associated with submerged mangrove leaf litter in India. Revista de Biología Tropical, 55(2): 393–400. Retrieved from http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442007000200005&lng=en&tlng=en

Ritchie, K.B. (2006). Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Marine Ecology Progress Series, 322: 1–14. https://doi.org/10.3354/meps322001

Roughgarden, J. (2023). Holobiont evolution: population theory for the hologenome. The American Naturalist, 201(6): 763–778. https://doi.org/10.1086/723782

Rowan, R. (1998). Review-diversity and ecology of Zooxanthellae on coral reefs. Journal of Phycology, 34(3): 407–417. https://doi.org/10.1046/j.1529-8817.1998.340407.x

Sagan, L. (1967). On the origin of mitosing cells. Journal of Theoretical Biology, 14(3): 225–274. https://doi.org/10.1016/0022-5193(67)90079-3

Salvucci, E. (2016). Microbiome, holobiont and the net of life. Critical Reviews in Microbiology, 42(3): 485–494. https://doi.org/10.3109/1040841X.2014.962478

Sarker, S.; Masud-Ul-Alam, M.; Hossain, M.S.; Rahman Chowdhury, S. & Sharifuzzaman, S. M. (2021). A review of bioturbation and sediment organic geochemistry in mangroves. Geological Journal, 56(5): 2439–2450. https://doi.org/10.1002/gj.3808

Scherer, B.P.; Mason, O.U. & Mast, A.R. (2022). Bacterial communities vary across populations and tissue type in red mangroves (‘Rhizophora mangle’, Rhizophoraceae) along an expanding front. FEMS Microbiology Ecology, 98(12): fiac139. https://doi.org/10.1093/femsec/fiac139

Scott, C.B. (2024). Long-term dynamics and theoretical considerations in coral holobiont adaptation (Dissertation presented for the degree of Doctor of Philosophy). The University of Texas at Austin. https://repositories.lib.utexas.edu/bitstreams/b8f5463c-445f-4121-9d90-82283bdec239/download

Segaran, T.C.; Azra, M.N.; Lananan, F.; Burlakovs, J.; Vincevica-Gaile, Z.; Rudovica, V.; Grinfelde, I.; Rahim, N.H.A. & Satyanarayana, B. (2023). Mapping the link between climate change and mangrove forest: a global overview of the literature. Forests, 14(2): 421. https://doi.org/10.3390/f14020421

Shipley, O.N.; Matich, P.; Hussey, N.E.; Brooks, A.M.L.; Chapman, D.; Frisk, M.G.; Guttridge, A.E.; Guttridge, T.L.; Howey, L.A.; Kattan, S.; Madigan, D.J.; O’Shea, O.; Polunin, N.V.; Power, M.; Smukall, M.J.; Schneider, E.V.C.; Shea, B.D.; Talwar, B.S.; Winchester, M.; Brooks, E.J. & Gallagher, A.J. (2023). Energetic connectivity of diverse elasmobranch populations – implications for ecological resilience. Proceedings of the Royal Society B: biological sciences, 290: 20230262. https://doi.org/10.1098/rspb.2023.0262

Singh, B.K.; Liu, H. & Trivedi, P. (2020). Eco-holobiont: a new concept to identify drivers of host-associated microorganisms. Environmental microbiology, 22(2): 564–567. https://doi.org/10.1111/1462-2920.14900

Skillings, D. (2016). Holobionts and the ecology of organisms: multi-species communities or integrated individuals? Biology & Philosophy, 31: 875–892. https://doi.org/10.1007/s10539-016-9544-0

Spalding, M.; Kainuma, M. & Collins, L. (2010). World Atlas of Mangroves (p. 336). Routledge. eBook ISBN 9781849776608. https://doi.org/10.4324/9781849776608

Thompson, J.R.; Rivera, H.E.; Closek, C.J. & Medina, M. (2015). Microbes in the coral holobiont: partners through evolution, development, and ecological interactions. Frontiers in cellular and infection microbiology, 4: 176. https://doi.org/10.3389/fcimb.2014.00176

Vazquez, P.; Holguin, G.; Puente, M.E.; Lopez-Cortes, A. & Bashan, Y. (2000). Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils, 30(5): 460–468. https://doi.org/10.1007/s003740050024

Wild, C.; Woyt, H. & Huettel, M. (2005). Influence of coral mucus on nutrient fluxes in carbonate sands. Marine Ecology Progress Series, 287: 87–98. http://dx.doi.org/10.3354/meps287087

Yu, X.; Tu, Q.; Liu, J.; Peng, Y.; Wang, C.; Xiao, F.; Lian, Y.; Yang, X.; Hu, R.; Yu, H.; Qian, L.; Wu, D.; He, Z.; Shu, L., He, Q.; Tian, Y.; Wang, F.; Wang, S.; Wu, B.; Huang, Z.; He, J.; Yan, Q. & He, Z. (2023). Environmental selection and evolutionary process jointly shape genomic and functional profiles of mangrove rhizosphere microbiomes. mLife, 2(3): 253–266. https://doi.org/10.1002/mlf2.12077

Zhang, L.; Guo, Z.H. & Li, Z.Y. (2013). Carbon storage and carbon sink of mangrove wetland: research progress. The journal of applied ecology, 24(4): 1153–1159. https://pubmed.ncbi.nlm.nih.gov/23898678/

Zhang, N.; Thompson, C.E.L. & Townend, I.H. (2023). The effects of disturbance on the microbial mediation of sediment stability. Limnology and Oceanography, 68(7): 1567–1579. https://doi.org/10.1002/lno.12368

Downloads

Published

2024-09-12

How to Cite

Montes Gabriel, D., Becerril Jiménez, M. B., Hernández Martínez, E., & Vázquez Rosas Landa, M. (2024). MANGROVES AS HOLOBIONTS AND OTHER SEA STORIES. Kuxulkab’, 30(68), e6388. https://doi.org/10.19136/kuxulkab.a30n68.6388

Similar Articles

1-10 of 66

You may also start an advanced similarity search for this article.