MicroRNAs (miRNAs) AS REGULATORS OF GENE EXPRESSION AND THEIR CLINICAL IMPORTANCE
DOI:
https://doi.org/10.19136/kuxulkab.a28n60.4657Keywords:
Noncoding RNA, Genetic regulation, BiomarkersAbstract
miRNAs are small non-coding endogenous RNAs that regulate gene expression and are involved in the development of various diseases; therefore, they are of therapeutic relevance. The objective of this work is to make known in a general way the role that miRNAs play in the development of diseases and their application as biomarkers. To do this, an observational study was carried out by searching the scientific literature using the PubMed database. The synthesis of the evidence shows us that the processes regulated by miRNAs and the identification of target genes in the development of diseases is a very valuable and exciting strategy that may eventually lead to the development of new treatment approaches.
Downloads
References
Angelopoulou, E.; Paudel, Y.N. & Piperi, C. (2019). miR-124 and Parkinson's disease: a biomarker with therapeutic potential. Pharmacol Res., (150): 104515. DOI «https://doi.org/10.1016/j.phrs.2019.104515»
Atkin, S.L.; Ramachandran, V.; Yousri, N.A.; Benurwar, M.; Simper, S.C.; McKinlay, R.; Adams, T.D.; Najafi-Shoushtari, H. & Hunt, S.C. (2019). Changes in blood microRNA expression and early metabolic responsiveness 21 days following bariatric surgery. Frontiers in Endocrinology, 9: 773. DOI «https://doi.org/10.3389/fendo.2018.0077»
Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2): 281-297. DOI «https://doi.org/10.1016/S0092-8674(04)00045-5»
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A. & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer Journal for Clinicians, 68(6): 394-424. DOI «https://doi.org/10.3322/caac.21492»
Budak, H.; Bulut, R.; Kantar, M. & Alptekin, B. (2016). MicroRNA nomenclature and the need for a revised naming prescription. Briefings in functional genomics, 15(1): 65–71. DOI «https://doi.org/10.1093/bfgp/elv026»
Canter, R.G.; Penney, J. & Tsai, L.H. (2016). The road to restoring neural circuits for the treatment of Alzheimer's disease. Nature, (539): 187-196. DOI «https://doi.org/10.1038/nature20412»
Churov, A.V.; Oleinik, E.K. & Knip, M. (2015). MicroRNAs in rheumatoid arthritis: altered expression and diagnostic potential. Autoimmunity Reviews, 14(11): 1029-1037. DOI «https://doi.org/10.1016/j.autrev.2015.07.005»
Cirillo, F.; Catellani, C.; Sartori, C.; Lazzeroni, P.; Amarri, S. & Street, M.E. (2019). Obesity, insulin resistance, and colorectal cancer: could miRNA dysregulation play a role?. International Journal of Molecular Sciences, 20(12): 2922. DOI «https://doi.org/10.3390/ijms20122922»
Cunningham, C.C.; Wade, S.; Floudas, A.; Orr, C.; McGarry, T.; Wade, S.; Cregan, S.; Fearon, U. & Veale, D.J. (2021). Serum miRNA signature in rheumatoid arthritis and 'At-Risk Individuals'. Frontiers in Immunology, 12: 633201. DOI «https://doi.org/10.3389/fimmu.2021.633201»
Denli, A.M.; Tops, B.B.J.; Plasterk, R.H.A.; Ketting, R.F. & Hannon, G.J. (2004). Processing of primary microRNAs by the Microprocessor complex. Nature, 432: 231-235. «https://doi.org/10.1038/nature03049»
Di Leva, G.; Garofalo, M. & Croce, C.M. (2014). MicroRNAs in cancer. Annual Review of Pathology, 9, 287-314. DOI «https://doi.org/10.1146/annurev-pathol-012513-104715»
Du, H.; Zhao, Y.; Yin, Z.; Wang, D.W. & Chen, C. (2021). The role of miR-320 in glucose and lipid metabolism disorder-associated diseases. International Journal of Biological Sciences, 17(2): 402-416. DOI «https://doi.org/10.7150/ijbs.53419»
Eddy, S.R. (2001). Non-coding RNA genes and the modern RNA world. Nature Reviews Genetics, 2: 919-929. DOI «https://doi.org/10.1038/35103511»
Evangelatos, G.; Fragoulis, G.E.; Koulouri, V. & Lambrou, G.I. (2019). MicroRNAs in rheumatoid arthritis: from pathogenesis to clinical impact. Autoimmunity reviews, 18(11): 102391. DOI «https://doi.org/10.1016/j.autrev.2019.102391»
Fukuda, T.; Itoh, M.; Ichikawa, T.; Washiyama, K. & Goto, Y. (2005). Delayed maturation of neuronal architecture and synaptogenesis in cerebral cortex of Mecp2-deficient mice. Journal of Neuropathology & Experimental Neurology, 64(6): 537-544. DOI «https://doi.org/10.1093/jnen/64.6.537»
Goh, S.Y.; Chao, Y.X.; Dheen, S.T.; Tan, E.K. & Tay, S.S. (2019). Role of MicroRNAs in Parkinson's disease. International Journal of Molecular Sciences, 20(22): 5649. DOI «https://doi.org/10.3390/ijms20225649»
Ha, M. & Kim, V.N. (2014). Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology, 15: 509-524. DOI «https://doi.org/10.1038/nrm3838»
Han, J.; Lee, Y.; Yeom, K.H.; Kim, Y.K.; Jin, H. & Kim, V.N. (2004). The Drosha-DGCR8 complex in primary microRNA processing. Genes & development, 18(24): 3016-3027. DOI «https://doi.org/10.1101/gad.1262504»
Hanahan, D. & Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5): 646-674. DOI «https://doi.org/10.1016/j.cell.2011.02.013»
He, Z.; Xu, H.; Meng, Y. & Kuang, Y. (2017). miR-944 acts as a prognostic marker and promotes the tumor progression in endometrial cancer. Biomedicine & Pharmacotherapy, 88: 902-910. DOI «https://doi.org/10.1016/j.biopha.2017.01.117»
Heemels, M.T. (2016). Neurodegenerative diseases. Nature, 539: 179. DOI «https://doi.org/10.1038/539179a»
Impey, S.; Davare, M.; Lasiek, A.; Fortin, D.; Ando, H.; Varlamova, O.; Obrietan, K.; Soderling, T.; Goodman, R.H. & Wayman, G.A. (2010). An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling. Molecular and Cellular Neuroscience, 43(1): 146-156. DOI «https://doi.org/10.1016/j.mcn.2009.10.005»
Iorio, M.V. & Croce, C.M. (2012). microRNA involvement in human cancer. Carcinogenesis, 33(6): 1126-1133. DOI «https://doi.org/10.1093/carcin/bgs140»
Jankovic, J. (2008). Parkinson's disease: clinical features and diagnosis. Journal of neurology, neurosurgery, and psychiatry, 79(4): 368-376. DOI «https://doi.org/10.1136/jnnp.2007.131045»
Landrier, J.F.; Derghal, A. & Mounien, L. (2019). MicroRNAs in obesity and related metabolic disorders. Cells, 8(8): 859. DOI «https://doi.org/10.3390/cells8080859»
Lawrence, E. (Comp.). (2014). Diccionario de Biología, (Trad. Henderson’s Dictionary of Biology; p. 622). México: Editorial Trillas. ISBN 978-607-17-2057-3
Lawrence, E. (Edit.). (2003). Diccionario Akal de Términos Biológicos, (12va ed.; Henderson’s Dictionary of Biological Terms; R. Codes Valcarce & Fco. J. Espino Nuño, Trad.; p. 688). Madrid, España: Ediciones Akal. ISBN 84-460-1582X.
Lee, R.C.; Feinbaum, R.L. & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5): 843-854. DOI «https://doi.org/10.1016/0092-8674(93)90529-Y»
Lee, Y.S. & Dutta, A. (2009). MicroRNAs in cancer. Annual review of pathology, 4: 199-227. DOI «https://doi.org/10.1146/annurev.pathol.4.110807.092222»
Long, H.; Wang, X.; Chen, Y.; Wang, L.; Zhao, M. & Lu, Q. (2018). Dysregulation of microRNAs in autoimmune diseases: pathogenesis, biomarkers and potential therapeutic targets. Cancer Letters, 428: 90-103. DOI «https://doi.org/10.1016/j.canlet.2018.04.016»
Lu, T.X. & Rothenberg, M.E. (2018). MicroRNA. Journal of Allergy and Clinical Immunology, 141(4): 1202-1207. DOI «https://doi.org/10.1016/j.jaci.2017.08.034»
McGuire, A.; Brown, J.A.L. & Kerin, M.J. (2015). Metastatic breast cancer: the potential of miRNA for diagnosis and treatment monitoring. Cancer Metastasis Reviews, 34(1): 145-155. DOI «https://doi.org/10.1007/s10555-015-9551-7»
Milevskiy, M.J.G.; Gujral, U.; Del Lama Marques, C.; Stone, A.; Northwood, K.; Burke, L.J.; Gee, J.M.W.; Nephew, K. Clark, S. & Brown, M.A. (2019). MicroRNA-196a is regulated by ER and is a prognostic biomarker in ER+ breast cancer. British Journal of Cancer, 120: 621-632. DOI «https://doi.org/10.1038/s41416-019-0395-8»
Miñones-Moyano, E.; Porta, S.; Escaramís, G.; Rabionet, R.; Iraola, S.; Kagerbauer, B.; Espinosa-Parrilla, Y.; Ferrer, I.; Estivill, X. & Martí, E. (2011). MicroRNA profiling of Parkinson's disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Human Molecular Genetics, 20(15): 3067-3078. DOI «https://doi.org/10.1093/hmg/ddr210»
Nahand, J.S.; Taghizadeh-boroujeni, S.; Karimzadeh, M.; Borran, S.; Pourhanifeh, M.H.; Moghoofei, M.; Bokharaei-Salim, F.; Karampoor, S.; Jafari, A.; Asemi, Z.; Tbibzadeh, A.; Namdar, A. & Mirzaei, H. (2019). microRNAs: new prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. Journal of Cellular Physiology, 234(10): 17064-17099. DOI «https://doi.org/10.1002/jcp.28457»
Nies, Y.H.; Mohamad Najib, N.H.; Lim, W.L.; Kamaruzzaman, M.A.; Yahaya, M.F. & Teoh, S.L. (2021). MicroRNA Dysregulation in Parkinson's disease: a narrative review. Frontiers in Neuroscience, 15: 660379. DOI «https://doi.org/10.3389/fnins.2021.660379»
O'Brien, J.; Hayder, H.; Zayed, Y. & Peng, C. (2018). Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in Endocrinology, 9: 402. DOI «https://doi.org/10.3389/fendo.2018.00402»
Okada, C.; Yamashita, E.; Lee, S.J.; Shibata, S.; Katahira, J., Nakagawa, A.; Yoneda, Y. & Tsukihara, T. (2009). A high-resolution structure of the pre-microRNA nuclear export machinery. Science, 326(5957): 1275-1279. DOI «https://doi.org/10.1126/science.1178705»
Shin, V.Y. & Chu, K.M. (2014). MiRNA as potential biomarkers and therapeutic targets for gastric cancer. World Journal of Gastroenterology, 20(30): 10432-10439. DOI «https://doi.org/10.3748%2Fwjg.v20.i30.10432»
Silvestro, S.; Bramanti, P. & Mazzon, E. (2019). Role of miRNAs in Alzheimer's disease and possible fields of application. International Journal of Molecular Sciences, 20(16): 3979. DOI «https://doi.org/10.3390/ijms20163979»
Smith, T.; Rajakaruna, C.; Caputo, M. & Emanueli, C. (2015). MicroRNAs in congenital heart disease. Annals of translational medicine, 3(21): 333. DOI «https://doi.org/10.3978/j.issn.2305-5839.2015.12.25»
Stypińska, B. & Paradowska-Gorycka, A. (2015). Cytokines and microRNAs as candidate biomarkers for systemic lupus erythematosus. International Journal of Molecular Sciences, 16(10): 24194-24218. DOI «https://doi.org/10.3390/ijms161024194»
Tomankova, T.; Petrek, M.; Gallo, J. & Kriegova, E. (2011). MicroRNAs: emerging regulators of immune-mediated diseases. Scandinavian Journal of Immunology, 75(2): 129-141. DOI «https://doi.org/10.1111/j.1365-3083.2011.02650.x»
Tornesello, M.L.; Faraonio, R.; Buonaguro, L.; Annunziata, C.; Starita, N.; Cerasuolo, A.; Pezzuto, F.; Tornesello, A.L. & Buonaguro, F.M. (2020). The role of microRNAs, long non-coding RNAs, and circular RNAs in cervical cancer. Frontiers in Oncology, 10: 150. DOI «https://doi.org/10.3389/fonc.2020.00150»
Vasu, S.; Kumano, K.; Darden, C.M.; Rahman, I.; Lawrence, M.C. & Naziruddin, B. (2019). MicroRNA Signatures as Future Biomarkers for Diagnosis of Diabetes States. Cells, 8(12): 1533. DOI «https://doi.org/10.3390/cells8121533»
Yoda, M.; Kawamata, T.; Paroo, Z.; Ye, X.; Iwasaki, S.; Liu, Q. & Tomari, Y. (2010). ATP-dependent human RISC assembly pathways. Nature Structural & Molecular Biology, 17: 17-23. DOI «https://doi.org/10.1038/nsmb.1733»
Zampetaki, A.; Kiechl, S.; Drozdov, I.; Willeit, P.; Mayr, U.; Prokopi, M.; Mayr, A.; Weger, S.; Oberhollenzer, F.; Bonora, E.; Shah, A.; Willeit, J. & Mayr, M. (2010). Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circulation research, 107(6): 810-817. DOI «https://doi.org/10.1161/circresaha.110.226357
Zhang, B.; Pan, X.; Cobb, G.P. & Anderson, T.A. (2007). microRNAs as oncogenes and tumor suppressors. Developmental biology, 302(1): 1-12. DOI «https://doi.org/10.1016/j.ydbio.2006.08.028»
Zhang, H.; Kolb, F.A.; Jaskiewicz, L.; Westhof, E. & Filipowicz, W. (2004). Single processing center models for human dicer and bacterial RNase III. Cell, 118(1): 57-68. DOI «https://doi.org/10.1016/j.cell.2004.06.017»
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Kuxulkab'

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Los autores que publiquen en Kuxulkab' aceptan las siguientes condiciones como política de acceso abierto:
1. Que conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribucion de "Creative Commons", que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
2. El autor puede realizar otros acuerdos contractuales independientes o adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista, como por ejemplo incluirlo en un repositorio institucional o publicarlo en un libro, siempre que se indique claramente que el trabajo se publicó por primera vez en esta revista.